Harvard Papers in Botany
Initiated in 1989

Harvard Papers in Botany is a refereed journal that welcomes longer monographic and floristic accounts of plants and fungi, as well as papers concerning economic botany, systematic botany, molecular phylogenetics, the history of botany, and relevant and significant bibliographies, as well as book reviews. Harvard Papers in Botany is open to all who wish to contribute.

Instructions for Authors
http://huh.harvard.edu/pages/manuscript-preparation

Manuscript Submission
Manuscripts, including tables and figures, should be submitted via email to papers@oeb.harvard.edu. The text should be in a major word-processing program in either Microsoft Windows, Apple Macintosh, or a compatible format. Authors should include a submission checklist available at http://huh.harvard.edu/files/herbaria/files/submission-checklist.pdf

Availability of Current and Back Issues
Harvard Papers in Botany publishes two numbers per year, in June and December. The two numbers of volume 18, 2013 comprised the last issue distributed in printed form. Starting with volume 19, 2014, Harvard Papers in Botany became an electronic serial. It is available by subscription from volume 10, 2005 to the present via BioOne (http://www.bioone.org/). The content of the current issue is freely available at the Harvard University Herbaria & Libraries website (http://huh.harvard.edu/pdf-downloads). The content of back issues is also available from JSTOR (http://www.jstor.org/) volume 1, 1989 through volume 12, 2007 with a five-year moving wall.

Publication Exchange Agreements
Please send inquiries to botserials@oeb.harvard.edu or to the Serials Acquisition Manager at Serials Acquisitions & Exchanges, Harvard Botany Libraries, 22 Divinity Avenue, Cambridge, MA 02138, U.S.A.

To meet our publication exchange agreements, we are currently developing a mechanism to supply an electronic copy of each issue to the institutions with which we maintain an exchange program.

For all other questions and/or to order back issues, please email papers@oeb.harvard.edu.

Harvard Papers in Botany Volume 21, Number 1, was published online July 25, 2016.

Editor:
GUSTAVO A. ROMERO

Managing Editor:
DEBORAH SMILEY

Nomenclature Editor:
KANCHI N. GANDHI

Editorial Board:
DAVID E. BOUFFORD
FRANK ALMEIDA
SARAH MATHWEIS
IHSAN AL-SHEHBAZ

RODRIGO DUNO
GERARDO A. AYMARD
LISA CAMPBELL
JASON GRANT

Cover: Masdevallia utriculata Luer.
(see page 329, Figure 3). Drawing by L. Oses.
Ihsan A. Al-Shehbaz
Lepidium seydelii (Brassicaceae), a new species from Namibia 133

Manuel Luján
Clusia Scariosepala (Clusaceae), a distinct species of *Clusia* sect. *Anandrogyne* endemic to the Venezuelan Andes 137

William Cetzal-Ix, Germán Carnevali Fernández-Concha, and Gustavo Romero-González
Synopsis of the *Trichocentrum*-clade (Orchidaceae, Oncidiinae) 141

Adam P. Karremans, Diego Bogarín, Melissa Díaz-Morales, Melania Fernández, Lisbeth Oses, and Franco Pupulin
Phylogenetic reassessment of *Acianthera* (Orchidaceae: Pleurothallidinae) 171

Maria Lúcia Kawasaki and Daniel Santamaría-Aguilar
A new species of *Calyptranthes* (Myrtaceae) from Peru 189

Carlyle A. Luer
Icones Stelidarum (Orchidaceae) Colombiae II 193

Saman A. Ahmad
Salvia Ali-Askaryi (Lamiaceae), a new species from Kurdistan, Iraq 227

Paul Ormerod
Neotropical orchid miscellanea 231

Lisa Thoerle and Xavier Cornejo
Lepanthopsis kayi (Pleurothallidinae, Orchidaceae), a new species from eastern Ecuador 247

Robert L. Dressler, Marco Acuña, and Franco Pupulin
Sobralia turrialbina (Orchidaceae: Sobralieae): long cultivated and now described 251

Franco Pupulin, Diego Bogarín, Melania Fernández, Melissa Díaz-Morales, Jaime Aguilar, and Carlos Ossenbach
Orchidaceae Tonduzianae: typification of Costa Rican Orchidaceae described from collections of Adolphe Tonduz 263

Franco Pupulin
A note on three “new” species of *Xylobium* (Orchidaceae, Maxillariinae) from Ruiz and Pavón’s Peruvian collections 321

Lizbeth Oses Salas and Adam P. Karremans
A note on *Masdevallia Zahlbruckneri* and *M. Utriculata* (Orchidaceae) 325

Xavier Cornejo and Carmen Ulloa Ulloa
Ternstroemia washkiatii (Pentaphylacaceae): a new tree species from Eastern Ecuador 337

Index to New Names and Combinations 341
Page ii intentionally left blank.
LEPIDIUM SEYDELII (BRASSICACEAE), A NEW SPECIES FROM NAMIBIA

IHSAN A. AL-SHEHBAZ

Abstract. *Lepidium seydelii* (Brassicaceae), a new species from Namibia, is described and illustrated. It is easily distinguished from the closely related to *L. divaricatum* and all other southern African species of *Lepidium* by having pubescent, elliptic to elliptic-ovate fruit 1.3–1.6 × 1–1.2 mm and fruiting pedicels densely hirsutulous all around. A key distinguishing the four species of *Lepidium* native to Namibia is presented.

Keywords: Brassicaceae, Cruciferae, *Lepidium*, Namibia.

Lepidium L., the second largest genus in the family Brassicaceae (Cruciferae) after *Draba* L., includes at least 250 species (Al-Shehbaz, 20129) represented by native species on all continents except Antarctica (Al-Shehbaz, 1986). The limits of *Lepidium* have expanded a great deal based on extensive molecular, developmental, and morphological studies, and the interested reader should consult Al-Shehbaz & Mummenhoff (2011) for leads.

During work on a worldwide monograph of *Lepidium*, an unusual, Namibian, densely hirsutulous specimen of the genus was found among the undetermined South African material at the Missouri Botanical Garden. An attempt to identify it following Thellung (1906 a, b) and Marais (1970) clearly showed that it did not fit in any of the known native species in that part of the continent, and it is described below.

Lepidium seydelii Al-Shehbaz, sp. nov. Type: Namibia, Windhuk Bergland Avis, 20 April 1965, 1600 m, B. Seydel 4365 (Holotype: MO 2008117; Isotypes: B_10-0699398, B_10-0699399). Fig. 1.

Herbs, perhaps perennial, densely hirsutulous throughout. *Trichomes* slender, straight, spreading. *Stems* 20–30 cm, ascending, slender, few from base, much branched above the middle, hirsutulous with spreading trichomes 0.05–0.12 mm. *Basal leaves* not seen; middle cauline leaves oblongate, 1.5–2.5 cm × 3–6 mm, densely hirsutulous with spreading trichomes 0.05–0.22 mm, attenuate to petiole-like base, not auriculate, margin serrulate with up to 6 minute teeth on each side; upper leaves gradually reduced in size upwards, uppermost apically 3-toothed. *Racemes* ebracteate, corymbose, dense, much elongated in fruit but not so towards end of season, main branches up to 12 cm or more and with 100 or more fruit; rachis straight, densely hirsutulous as stem; fruiting pedicels 1.4–2 mm, densely hirsutulous all around, terete, wingless, ascending along proximal half, arcuate-recurved along distal half, persistent. *Sepals* ovate, ca. 0.4 mm, caducous, ascending, equal; petals white, erect, much shorter than sepals, ca. 0.1 × 0.05 mm, blade oblong, apex obtuse, claw absent; stamens 2, equal in length, median; filaments 0.3–0.4 mm, glabrous, slender at base; anthers ovate, ca. 0.1 mm; nectar glands 4, toothlike. *Fruit* dehiscent, elliptic to elliptic-ovate, 1.3–1.6 × 1–1.2 mm, strongly angustiseptate, not inflated; valves papery, veinless, pubescent with spreading trichomes to 0.05 mm, smooth, strongly keeled, apically minutely winged; apical notch V-shaped, 0.05–0.12 mm deep; septum complete; style 0.05–0.12 mm, subequaling apical notch of fruit; stigma capitate, entire. *Seeds* 1 per locule, oblong, 0.7–0.85 × 0.4–0.5 mm, wingless, light brown, minutely reticulate; cotyledons incumbent.

Eponymy: This novelty is named in honor of R. Seydel who collected the type material.

Habitat: rocky, steep slopes.

IUCN Red List Category: *Lepidium seydelii* is known only from the type collections above. A full conservation assessment cannot be determined at this point and, therefore, according to the IUCN (2001) classification, I prefer to give it a Data Deficient (DD) criterion.

Lepidium seydelii is easily distinguished from all of its congeners in southern Africa by having pubescent fruit and fruiting pedicels densely hirsutulous all around. The other species always have glabrous fruit and fruiting pedicels either puberulent adaxially or glabrous. It is most closely related to *L. divaricatum* Ait., a species restricted to South Africa and Namibia. In addition to the differences above, it can also be distinguished from the latter species by having shorter fruiting pedicels (1.4–2 vs. 2–3.5 mm) and sepals (ca. 0.4 vs. 0.6–1 mm), style subequaling (vs. shorter than) the apical notch of fruit, and smaller petals (ca. 0.1 × 0.05 vs. 0.3–0.9 × ca. 0.1 mm), fruit (1.3–1.6 × 1–1.2 vs. 2.3–3.7 × 1.8–2.3 mm), and seeds (0.7–0.85 × 0.4–0.5 vs 1–1.3 × 0.5–0.7 mm).

Based on Marais (1970), Namibia (as Southwest Africa) has only three native species of *Lepidium*, including *L. desertorum* Eckl. & Zeyh., *L. divaricatum*, and *Coronopus integrifolius* (DC.) Spreng. (herein as *L. engleriannum* (Muschl.) Al-Shehbaz. These and *L. seydelii* can easily be distinguished by the following key.

I am grateful to Sarah Bollendorff for locating the isotype sheets at the Botanisches Museum Berlin-Dahlem (B). I also thank Gustavo A. Romero and Deborah Smiley for their editorial advice. Partial funding for this research was supported by the United States National Science Foundation grant DEB-1252905, for which I am profoundly grateful.

1 Missouri Botanical Garden, 2345 Tower Grove Avenue, St. Louis, Missouri 63110, U.S.A.; ihsan.al-shehbaz@mobot.org

© President and Fellows of Harvard College, 2016

ISSN: 1938-2944, DOI: 10.3100/hpib.v21iss2.2016.n1, Published online: 31 December 2016
FIGURE 1. *Lepidium seydellii* Al-Shehbaz. A, plant; B, middle cauline leaf; C, sepal; D, fruit and fruiting pedicel with part of rachis; E, seed. Drawn by Al-Shehbaz from the holotype (MO 2008117).
KEY TO THE NATIVE NAMIBIAN SPECIES OF *LEPIDIUM*

1a. Fruit didymous, breaking at maturity into two, indehiscent segments not releasing seeds ... *L. englerianum*

1b. Fruit elliptic, elliptic-ovate, obcordate, or obcordate-ovate, dehiscent, readily releasing seeds ... 2

2a. Plants densely hirsutulous; fruiting pedicels densely hirsutulous all around; fruit pubescent ... *L. seydelii*

2b. Plants puberulent; fruiting pedicels puberulent adaxially, glabrous abaxially; fruit glabrous ... 3

3a. Fruit obcordate to obcordate-ovate, 1.6–2.1 × 1.4–1.8 mm; nectar glands filiform; petals absent; style exserted beyond apical fruit notch ... *L. desertorum*

3b. Fruit elliptic to elliptic-ovate, 2.3–3.7 × 1.8–2.3 mm; nectar glands toothlike; petals 0.3–0.9 mm; style included in apical fruit notch ... *L. divaricatum*

LITERATURE CITED

Page 136 intentionally left blank.
CLUSIA SCARIOSEPALA (CLUSIACEAE), A DISTINCT SPECIES OF CLUSIA SECT. ANANDROGYNE ENDEMIC TO THE VENEZUELAN ANDES

Manuel Luján

Abstract. Clusia sect. Anandrogyne is the most species-rich section in the genus and it includes approximately 70 species. Taxonomic boundaries within the group have been difficult to establish due to high degree of homoplasy in morphological characters. In order to make informed taxonomic decisions, an evaluation of both morphological (fruit morphology) and molecular (nrDNA ITS) data was made among species included in Clusia sect. Anandrogyne. It was found that Clusia multiflora subsp. scariosepala has strikingly distinctive fruit morphology and, furthermore, it is phylogenetically more closely related to other species of Clusia than to Clusia multiflora. Therefore, raising this taxon to the rank of species is proposed herein. Conservation status assessment for the species is also provided.

Resumen. Clusia sect. Anandrogyne es la sección con mayor número de especies en el género e incluye aproximadamente 70 especies. Los límites taxonómicos del grupo han sido difíciles de establecer debido a alto grado de homoplasiía en caracteres morfológicos. Con el fin de realizar decisiones taxonómicas fundamentadas, se evaluaron caracteres morfológicos (forma de fruto) y moleculares (nrDNA ITS) entre especies incluidas dentro de Clusia sect. Anandrogyne. Se encontró que Clusia multiflora subsp. scariosepala posee una forma de fruto notablemente distinta y que además, está filogenéticamente más relacionada con otras especies de Clusia que con Clusia multiflora. Por lo tanto, se propone elevar este taxón al rango de especie. Se proveye una evaluación del estado de conservación de la especie.

Keywords: Clusia sect. Anandrogyne, Andes, Venezuela

The Neotropical genus *Clusia* L. (ca. 300 spp., Clusiaceae) comprises woody hemiepiphytes, shrubs, and trees with remarkable physiological and morphological plasticity. The genus includes species known to use the C3, CAM and facultative C3/CAM photosynthetic pathways (Lüttge, 2006). *Clusia* is the only genus of trees in which some species produce floral resins as a reward for pollinators (Bittrich and Amaral, 1996). Nearly all species are dioecious and some are apomorphic (Maguire, 1976; Pipoly and Graff, 1995). The center of diversity of the genus is northern South America, specifically the montane forests of the Northern Andes, the Guyana Highlands, and the Amazonian lowlands (Gustafsson et al., 2007). Taxonomic work on *Clusia* began with Planchon and Triana (1860), Baillon (1877: 392–425), Vesque (1893), and Engler (1925); all of these authors based their infra-generic groupings mainly on the highly variable androecial characteristics. *Clusia* sect. Anandrogyne Planch. & Triana was defined to include species with 4–5-merous calyx, 5–6-merous corolla, staminate flowers with multiple free stamens inserted in a prominent receptacle, anthers linear with longitudinal dehiscence, and pistillate flowers with 5–10 antherantherous staminodia.

This section is considered the largest within the genus and includes approximately 70 species (Pipoly, 1995). Modern phylogenetic inferences based on molecular data have confirmed the monophyly of *Clusia* sect. *Anandrogyne*, although evolutionary relationships among closely related taxa are still unresolved (Gehrig et al., 2003; Gustafsson et al., 2007).

Within *Clusia* sect. *Anandrogyne*, authors have recognized the “multiflora complex,” an informal group that includes the widely polymorphic species *Clusia multiflora* Kunth and its closely related taxa (Maguire, 1979; E. Medina, pers. comm.). In this group, taxonomic boundaries are difficult to establish due to a high degree of intergradation among morphological characters (Hammel, 1986).

As part of an in-depth systematic analysis of *Clusia*, extensive sampling of taxa across the genus is currently being undertaken. A number of species from *Clusia* sect. *Anandrogyne*, including taxa from the *C. multiflora* complex, have been sampled. Preliminary phylogenetic analysis was performed in order to assess evolutionary relationships among taxa and to make informed taxonomic decisions.

Material and Methods

Herbarium specimens of taxa included in *Clusia* sect. *Anandrogyne* were studied from collections housed at F, HUH, MO, NY, US, and VEN (acronyms following Thiers, continuously updated). In order to assess phylogenetic relationships, plant material from representatives of *Clusia* sect. *Anandrogyne* was collected in the field, including collections from the type localities of *C. multiflora* and *Clusia multiflora* subsp. *scariosepala* Maguire. DNA extraction was performed using standard CTAB protocol (Doyle and Doyle, 1987). The entire internal transcribed spacer (ITS) of nuclear ribosomal repeat was amplified via polymerase chain reaction (PCR) using primers N-nc18S10

I would like to acknowledge the assistance provided by the directors, curators, and collection managers of the following herbaria: F, HUH, MO, NY, US and VEN, for kindly giving me access to their collections. Visits to herbarium collections were supported by the American Society of Plant Taxonomists Graduate Research Award, the Missouri Botanical Garden Alwyn H. Gentry Fellowships for Latin American Botanists, the Smithsonian Institution Lyman B. & Ruth C. Smith Fellowship Award, and the Rancho Santa Ana Botanic Garden Research Award, for which I am profoundly grateful. I also would like to thank Melissa A. Johnson and Carrie A. Kiel (RSABG) for providing fundamental laboratory training.

© President and Fellows of Harvard College, 2016

ISSN: 1938-2944, DOI: 10.3100/hpib.v21iss2.2016.n2, Published online: 31 December 2016
and C26A (Wen and Zimmer, 1996). PCR products were sequenced on the ABIxl sequencer facility at Rancho Santa Ana Botanic Garden following the BigDye® terminator protocol. Additional ITS sequences from taxa included in Clusia sect. Anandrogyne, as well as outgroups taxa, were downloaded from GenBank. All sequences were edited, assembled and aligned using MUSCLE algorithm as implemented in Geneious® 8.1.8 (Biomatters Ltd., Auckland, New Zealand). Model of evolution was estimated using ModelTest in Phangorn package (Schleip and Paradis, 2013) in R statistics environment. The Akaike Information Criterion (AIC; Akaike et al., 1974) was used to choose among substitution models. Maximum likelihood (ML) analyses was conducted using PhyML (Guindon and Gasquel 2003) with 1000 nonparametric bootstrap replicates to estimate support values. Bayesian inference (BI) analyses was performed in MrBayes 3.2.6 (2001) using 10,000,000 cycles of MCMC algorithm with four heated chains, 1000 burn-in samples and a sampling frequency of 10,000 generations.

RESULTS

Observation of qualitative morphological characters of taxa included in Clusia sect. Anandrogyne showed extensive homogeneity, particularly in vegetative characters. Nonetheless, fruit morphology of C. multiflora subsp. scariosepala exhibited remarkable distinct characteristics. Capsules of C. multiflora subsp. scariosepala have 6–8 deep longitudinal grooves or slits and distally-free style vestiges. Capsules in other taxa from Clusia sect. Anandrogyne, including C. multiflora, have smooth surface and connate style vestiges (Fig. 1).

The alignment of the ITS sequence resulted in a matrix of 39 accessions and 674 bp of which 459 are variable and 293 and potentially parsimony informative. Maximum likelihood and Bayesian analyses resulted in similar reconstructions of phylogenetic relationships. Moreover, phylogenetic reconstructions based on 207 terminals, including representatives of all sections within Clusia (data not shown) results in the same tree topology for section Anandrogyne. Monophyly of this section is strongly supported (0.98 posterior probability, 100% bootstrap support). Within the section, two main clades are resolved; one formed by C. salvinii Donn. Sm. and C. alata Planch. & Triana; and a second clade formed by all the remaining species in the section. Evolutionary relationships among taxa included in this second clade are not well resolved, particularly among species closely related to C. multiflora (the multiflora complex). Phylogenetic position of C. multiflora subsp. scariosepala was resolved with strong support in a clade that includes C. ducu Benth, C. elliptica Kunth, C. trochoiformis Vesque, and C. melchiorii Gleason (Fig. 1).

FIGURE 1. Bayesian analysis consensus tree of ITS region from Clusia sect. Anandrogyne. Numbers above branches indicate Bayesian posterior probabilities. Terminals are taxa with corresponding GenBank accession codes. Pictures of fresh mature capsules are shown. A, C. scariosepala (KX373642); B, C. melchiorii (KX373653); C, C. multiflora (KX373638); D, C. stenophylla (KX373650); E, C. salvinii (KX373637). Scale bar = 1 cm.
Observation of qualitative morphological characters of taxa in *Clusia* sect. *Anandrogyne* showed that fruit morphology in *C. multiflora* subsp. *scariosepala* is remarkably distinctive in the group, and that it is different from the fruits of *C. multiflora*. Moreover, phylogenetic analyses of ITS sequences provide evidence that *C. multiflora* subsp. *scariosepala* is phylogenetically more closely related to *C. duce*, *C. elliptica*, *C. trochiformis*, and *C. melchiorii* than to *C. multiflora*.

Based on a morphological species concept wherein “species are the smallest group that are consistently and persistently distinct and distinguishable by ordinary means” (Cronquist 1978), *C. multiflora* subsp. *scariosepala* should be considered a distinct species within *Clusia* sect. *Anandrogyne*, since it represents a biological entity morphologically different from *C. multiflora*. Furthermore, analysis of molecular data suggests that *C. multiflora* subsp. *scariosepala* is more closely related to other species within sect. *Anandrogyne* than to *C. multiflora*, which indicate that *C. multiflora* subsp. *scariosepala* belongs in a lineage apart from *C. multiflora*. In order to make taxonomic classification to reflect the evolutionary relationships in *Clusia*, a taxonomic status change is here proposed.

Although ITS data have shown to be useful to estimate the phylogenetic position of *Clusia* species, additional molecular data including more variable markers, as well as more extensive taxon sampling, are needed to better resolve evolutionary relationships within *Clusia* sect. *Anandrogyne*.

Taxonomic treatment

Clusia scariosepala (Maguire) Luján stat. nov.

Type: VENEZUELA. Mérida: frequent small tree, in temperate forest at 2200–2400 m, La Carbonera, 25 km NW [from] Ejido, 19 October 1953, B. Maguire 39446 ♀ (holotype: NY [LAPI 00842426]).

Etymology: Following ICN recommendation from Article 41.2 (McNeill et al. 2012), the specific epithet is based on the former infraspecific taxon name, which refers to the shriveled appearance of the sepal margins.

Conservation status: *Clusia scariosepala* is endemic to the Venezuelan Andes, and it is found in montane forests in the Cordillera de Mérida at 1850–2700 m (Fig. 2). *Clusia scariosepala* have been collected in two areas: Sierra de La Culata and Sierra Nevada. Collections from the...
latter have been made in Sierra Nevada National Park, therefore, conservation of the species in the area should be assured. Nonetheless, montane forests in the Sierra de la Culata area have been severely affected by deforestation and habitat transformation due to agricultural activities (Rodríguez-Morales et al. 2009). Moreover, extensive fieldwork was done in the Sierra de la Culata area on 2013 and only two populations of Clusia scariosepalata were found. Therefore, conservation status of Clusia scariosepalata is here assessed as Vulnerable under criterion B1 a, b (iii) of IUCN (2014) with an estimated extent of occurrence less than 20,000 km², severely fragmented habitat and decline of habitat quality.

Additional specimens examined: VENEZUELA. Mérida: La Carbonera, 25 km NW of Ejido, 2200–2400 m, 19 October 1953, B. Maguire 39445 ♂, 39447 ♀, (MO, Ny); VENEZUELA. Barinas: Dtto. Pedraza, W of El Carrizal, La Escaza, N of río Canagua, in área locally known as La Reynosa, Los Laureles and Los Granates, P. N. Sierrita Nevada, 8°31'N, 70°46'W, 27 June 1988, L. J. Dorf, L. C. Barnett and M. Guerrero 5726 (NY, PORT [not seen], VEN); Mérida: La Mucuy, 2600 m elev., August 1958, L. Arísteguieta 3318 (F, NY, VEN); Cerro Las Flores, 2000–2100 m, 26 April 1953, L. Bernardi 444 (NY); Bosque nublado San Eusebio, La Carbonera, 2250–2600 m, 1971, J. P. Veillon 18 (NY, VEN); 38 km W of Mérida, low forest near Las Cruses, 1850 m, 16 November 1966, J. De Brujin 1288 (VEN); Selva de musgos, prope Mérida, April 1957, V. Vareschi 4442 (VEN); Camino a Sierra Nevada, 10 km E de Mérida, 2700 m elev., 30 August 1953, E. L. Little Jr. 15492 (VEN); La Carbonera, 20 km NW de Ejido, 2000 m, 19 October 1953, E. L. Little Jr. 15775 (VEN); La Carbonera, 15 km NW de Ejido, 2200 m, 4 July 1953, E. L. Little Jr. 15276 (VEN); Dtto. Libertador, Mcpo. Tabay, P. N. Sierra Nevada, La Mucuy, via a la laguna La Coromoto, 9°54'N, 71°03'W, 2125 m, 2 February 1986, A. Castillo 1905 (VEN); P. N. Sierra Nevada, La Mucuy, 9°54'N, 71°03'W, 2150 m, 6 December 1980, A. Castillo 1030 (VEN).

Literature cited

SYNOPSIS OF THE TRICHOCENTRUM-CLADE (ORNITHIDAE, ORCHIDACEAE)

WILLIAM CETZAL-IX,1–3 GERMÁN CARNEVALI,1,4 AND GUSTAVO ROMERO-GONZÁLEZ1,4

Abstract: We present a synopsis of the Trichocentrum-clade of Oncidiinae. In this revision, we recognize 85 taxa assigned to four genera: Cohniella with 23 species in five complexes and two natural hybrids; Lophiarella with 27 species and eight natural hybrids, six of which are yet to be named; Trichocentrum with 27 species and two subspecies; and Lophiarella with three species. Cohniella yuoraeensis is referred to the synonymy of C. ultrajectina, C. allenii and C. christensoniana to the synonymy of C. nuda, and C. croatti to C. lacera. Trichocentrum perezii is referred to the synonymy of Lophiarella andreana. A key to the genera of the Trichocentrum-clade is presented as well as keys to the complexes or groups of species and, when applicable, natural hybrids of Cohniella, Lophiarella, Lophiarella, and Trichocentrum.

Keywords: Cohniella, geographic distribution, Lophiarella, Lophiarella, nomenclature, Trichocentrum

The Trichocentrum Poeppig & Endlicher clade of Oncidiinae, as circumscribed here, includes four genera: Cohniella Pitzer, Lophiarella Szlachetko, Mytnik-Ejmont & Romowicz, Lophiarias Rafinesque, and Trichocentrum (Carnevali et al., 2013). Some authors recognize this clade as a single genus using a broad definition for Trichocentrum (Williams et al., 2001; Sosa et al., 2001; Chase, 2009; Neubig et al., 2012).

The taxa of Trichocentrum-clade are characterized by one or rarely two leaves per sympodial module and a low chromosome number (2n = 26–28) (Chase, 2009). They are found from southern Florida (a single species) and northern Mexico to southern Brazil and northern Argentina, including the Greater Antilles (Pupulin and Carnevali, 2005; Carnevali et al., 2010; Cetzal-Ix and Carnevali, 2010; Balam, 2011). Lophiarella is a genus with a more restricted distribution being confined to southwestern Mexico and northwestern Mesoamerica, hence Megamexico (Carnevali et al., 2013). The taxa of these four genera grow in a variety of tropical vegetation associations, ranging from lowlands from tropical deciduous forests and tropical rainforests to thorn scrub forests, but can also be found in pine-oak forests, from sea level up to 1700 (~2800) m elevation. Overall, the clade includes 85 taxa: 23 species in five complexes and two natural hybrids in Cohniella; 27 species and eight natural hybrids (six of which are yet to be named) in Lophiarias; 27 species and two subspecies in Trichocentrum; and three species in Lophiarella. The country with the highest species diversity is Mexico with 29 taxa, 18 of which are members of Lophiarias (10 endemic), seven belong in Cohniella (4 endemic), two (one endemic) in Lophiarella, and another two (one endemic) in Trichocentrum. Mexico is followed by Costa Rica (5 endemic), Colombia (4 endemic), Brazil (3 endemic), Venezuela (3 endemic) all with 14 taxa, Honduras with 12 taxa, and Bolivia (one endemic), Guatemala, and El Salvador all with 11 taxa. Other countries are represented by fewer than 10 taxa (Table 1).

Characters used to recognize taxa and hybrids within the genera are primarily floral, such as the size and color (especially color patterns) of the flowers, shape and ornamentation (including the calli) of the labellum, presence or absence as well as the shape and ornamentation of the lateral lobes, emargination at the apex of the central lobe of the labellum, length of the spur (as in Trichocentrum sensu stricto), column features (shape and size of the column base, shape and position of the column wings), and the type of indumentum of the anther (Pupulin, 1995; Cetzal-Ix and Balam, 2012; Cetzal-Ix et al., 2013a–b). The vegetative characters include the relative size of the pseudobulbs relative to the leaves, the size, shape, thickness and transversal section of the leaves, the length of the inflorescence relative to the subtending leaf, and the position, number, and arrangement of flowers in the inflorescence. Furthermore, species or species complexes can be easily identified using these characters in combination with discrete patterns of ecological and geographical distribution (Cetzal-Ix and Balam, 2012; Cetzal-Ix et al., 2013a–b).

The aim of this contribution is to provide an updated list of recognized species in the Trichocentrum-clade with their taxonomic status, typification, and geographical distribution by country. A key to the genera of the Trichocentrum-clade is presented as well as keys to the complexes or groups of species, and natural hybrids of Cohniella, Lophiarella, Lophiarella, and Trichocentrum. Furthermore, a table with distribution of species by country, endemic species by country, and iconography for some species are provided.

WC-1 would like to acknowledge the support from CONACYT for postdoctoral studies. CONACYT partially funded this project via grant 49980-Q ("Filogenia molecular y morfológica, revisión sistemática y una exploración de cuatro regiones no-codificantes del genoma del cloroplasto para estudios filogeográficos en el complejo Trichocentrum (Orchidaceae: Cymbidieae: Oncidiinae") awarded to G. Carnevali; E. Mó, H. Vega, E. Noguera Savolli, and R. Balam. WC-1 gratefully acknowledges support from CONACyT (grant 49980-Q). Financial support. The authors thank (in alphabetical order) D. Bogarin, L. Carrera-Parra, R. Duno, J. Hunex, L. Ibarra, D. Jauregui, V. Paiva-Castro, L. Peraza, F. Pupulin, I. M. Ramírez Morillo, K. J. Romero, S. Salazar Vallejo, G. Silvera, J. L. Tapia Muñoz, A. Toscano de Brito, M. W. Whitten, N. H. Williams, and the horticultural community at large for supplying material critical for the completion of this project. S. Hernández Aguilar (CICY) for kindly handling literature requests and loans, and AMO, B. BHCB, BIGU, BM, BR, CEJ, CR, CTES, EAF, ECOSUR, F, FCQ, FLAS, G, HB, HEM, HOXA, HUA, HUESF, HVASF, JAN, I, IBA, IRA, JAUM, K, LPB, M, MEXU, MO, NY, OAX, P, PMA, QCA, QCNE, QMEX, RB, RENZ, S, SEL, SI, SP, SPF, TFAV, U, UB, UCR, UNALM, US, USF, USJ, USM, USZ, VEN, W, and XAL for allowing access to their collections.

1 Herbario CICY, Centro de Investigación Científica de Yucatán A. C. (CICY), Calle 43, No. 130, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, México
2 Instituto Tecnológico de Chiná, Calle 11 entre 22 y 28, Colonia Centro Chiná 24050, Campeche, México
3 Author for correspondence: rolito22@hotmail.com
4 Orchid Herbarium of Oakes Ames, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A.

© President and Fellows of Harvard College, 2016
ISSN: 1938-2944, DOI: 10.3100/hpib.v21iss2.2016.n3, Published online: 31 December 2016
TABLE 1. Number of *Trichocentrum*-clade taxa by country.5, 6

<table>
<thead>
<tr>
<th>Countries</th>
<th>Trichocentrum- clade</th>
<th>Cohniella</th>
<th>Lophiarella</th>
<th>Lophiarius</th>
<th>Trichocentrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico</td>
<td>29 [16*]</td>
<td>7 [4*]</td>
<td>2 [1*]</td>
<td>18 [10*]</td>
<td>2 [1*]</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>14 [5*]</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>9 [5*]</td>
</tr>
<tr>
<td>Colombia</td>
<td>14 [4*]</td>
<td>4 [1*]</td>
<td>0</td>
<td>5</td>
<td>5 [3*]</td>
</tr>
<tr>
<td>Brazil</td>
<td>14 [3*]</td>
<td>5 [2*]</td>
<td>0</td>
<td>5 [1*]</td>
<td>4</td>
</tr>
<tr>
<td>Venezuela</td>
<td>14 [3*]</td>
<td>6 [3*]</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Honduras</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Bolivia</td>
<td>11 [1*]</td>
<td>5 [1*]</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Guatemala</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>El Salvador</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Peru</td>
<td>10 [2*]</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>6 [2*]</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Panama</td>
<td>8 [2*]</td>
<td>3 [1*]</td>
<td>0</td>
<td>2 [1*]</td>
<td>3</td>
</tr>
<tr>
<td>Ecuador</td>
<td>6 [1*]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6 [1*]</td>
</tr>
<tr>
<td>Guyana</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Belize</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Suriname</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Argentina</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Paraguay</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lesser Antilles</td>
<td>2 [1*]</td>
<td>1 [1*]</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>French Guiana</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Greater Antilles</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>USA (Florida)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

5 [*] Endemic species;

Taxonomy treatment

Key to the genera of the Trichocentrum-clade

1a. Flowers > 40 mm diameter; ovaries 25–30 mm long; sepals and petals as long as the labellum; labellum white or yellow with reddish spots; Cohniella

1b. Flowers < 37 mm diameter; ovaries 9–23 mm long; sepals and petals much shorter than the labellum; labellum yellow or rarely yellow with brown or reddish spots only at base; Trichocentrum

2a. Plants small (leaves rarely exceeding 10 cm long); inflorescences shorter than the subtending leaves, mature plants bearing few [1–3(–5)]; successive flowers; labellum basally produced into a conspicuous spur; C. cepula

2b. Inflorescences usually longer than the leaves, rarely shorter; sepals and petals obovate with acute or oblique apexes; disc and callus conspicuous; bifacial leaves; C. teretifolia

3a. Leaves rigidly and thickly fleshy coriaceous; pseudobulbs large and conspicuous, at least 2 cm long, but up to 4 cm long; inflorescences stiffly erect, peduncle and rachis glaucous, coated with a thin film of wax; plants usually lithophytic; Lophiarella

3b. Leaves coriaceous or fleshy coriaceous, rarely rigid; pseudobulbs small, rarely exceeding 1.5 cm long; inflorescences more commonly ascendent or arching to nutant, never stiffly erect; peduncle and rachis non-glaucous; plants usually epiphytic, rarely lithophytic; Lophiaris

Synonyms: *Oncidium* sect. Cebolletae Lindl., Bot. Reg. 28: sub t .4. 1842. TYPE: *Epidendrum cebolleta* Jacq. [*Cohniella cebolleta* (Jacq.) Christenson]

Material and Methods

Figure 2. Distribution of Cohniella Pfitzer.

KEY TO THE SPECIES OF THE *COHNIELLA JONESIANA* COMPLEX

1a. Labellum yellow with orange-brown spots or blotches; distal portions of the lateral lobes of the labellum long laciniate *C. stacyi*

1b. Labellum entirely white or rarely with a few red spots along the proximal rim of the central lobe; distal portions of the lobes of the labellum entire to lacerate ... 2

2a. Sepals and petals pale yellow-green or chartreuse colored with a few, widely separated red-brown spots; plants from Bolivia, Paraguay, northern Argentina, and neighboring areas of Brazil ... *C. jonesiana*

2b. Sepals and petals pale yellow-green or chartreuse, almost entirely covered by confluent dark red-brown blotches which render the perianth segments almost unicolor; plants from Minas Gerais and Espírito Santo in SE Brazil ... *C. binotii*

KEY TO THE SPECIES OF THE *COHNIELLA ASCENDENS* COMPLEX

1a. Isthmus of the labellum much longer than broad (2–4 × 0.5–2.0 mm); callus consisting of 3 teeth or keels ... 2

1b. Isthmus of the labellum approximately as long as broad (0.5–4.0 × 0.5–3.0 mm); callus consisting of 5 teeth or keels 3

2a. Flowers 18–25 mm diameter; labellum with the lacerated margin; column wings conspicuous; callus of the labellum 1-partite; plants endemic to the central portion of Panama ... *C. lacera*

2b. Flowers 13–16 mm diameter; labellum with the entire or slightly lacerated; column wings reduced or absent; callus of the labellum 3-partite; plants from the eastern portion of Panama and northern Colombia and Venezuela ... *C. nuda*

3a. Central lobe of the labellum 5–6 mm wide; lateral margins of the labellum smooth; column wings bipartite; plants from Venezuela ... *C. amazonica*

3b. Central lobe of the labellum 7–13 mm wide; lateral margins of the labellum rugose; column wings terete; plants from Mexico to Colombia ... 4
KEY TO THE SPECIES OF THE COHNIELLA JONESIANA COMPLEX CONT.

4a. Flowers non resupinate; lateral lobes of the labellum triangular, short and thin (2–3 × 0.7–1.0 mm); plants from Panamá and Colombia .. C. helicantha
4b. Flowers resupinate; lateral lobes of the labellum various (obovate, oblong or triangular), lengths and widths (3–8 × 2–4 mm); plants from Mexico to Colombia .. 5
5a. Lateral lobes of the labellum erect, usually spatulate, broadly obovate; column wings terete; plants of northwestern Mexico ranging into southeastern Costa Rica ... C. ascenden
d
5b. Lateral lobes of the labellum patent, not spatulate, oblong-triangular; column wings subtriangular; plants from the valleys between the Central and Eastern Andean Cordilleras from Colombia .. C. aguirrei

KEY TO THE SPECIES OF THE COHNIELLA BRACHYPHYLLA COMPLEX

1a. Central lobe of the labellum approximately similar in shape and size to the lateral lobes, 5.8–8.0 mm wide; leaves pendent; plants from the western extreme of the Transmexican Volcanic Belt in coastal Jalisco and Nayarit. .. C. pendula
1b. Central lobe of the labellum different in shape and size from the lateral lobes, usually much larger, 9–21 mm wide; leaves usually erect or patent, rarely pendent; plants from other areas and not from western extreme of the Neovolcanic Transversal Axis .. 2
2a. Leaves rigidly erect, 5.5–16.0 (–26.0) cm long, many on the plant simultaneously (5–15); inflorescences rigidly erect, racemose, more rarely with a single lateral branch when well-developed; plants from north of the Neovolcanic Transversal Axis in Sinaloa with outliers in Durango, Chihuahua, and Sonora .. C. leptopotofolia
2b. Leaves various, 12–52 cm long, usually few to a plant (3–5); inflorescences various but usually patent to somewhat pendent, more rarely erect, usually a panicle with 2 or more branches in well-developed plants; plants from the Gulf coast or from the Pacific coast south of the Trans-Mexican Volcanic Belt .. 3
3a. Lateral lobes of the labellum as broad as long, almost as broad as the central lobe (0.85/1–1/1); plants from the Gulf states west and north of the Tehuantepec isthmus (Querétaro, San Luis Potosí, Tamaulipas, Veracruz) .. C. biorbicularis
3b. Lateral lobes of the labellum always longer than wide; plants from the Yucatan peninsula or from the Pacific coast of Mexico southward into Costa Rica .. 4
4a. Central lobe of the labellum rounded to truncate, not emarginate at all or only very shallowly so and then the emargination making an obtuse angle; labellum usually bearing spots on most of the undersurface; leaves 6–10 mm wide, conspicuously wider basally but abruptly tapering at base (forming a “neck” just above the pseudobulb) and more gradually tapering distally; plants from the Pacific drainage from Mexico into northwestern Costa Rica .. C. brachyphylla
4b. Central lobe of the labellum deeply emarginate, making an acute angle; labellum lacking spots on the undersurface, if present only on the underside of the disk; leaves 2.5–4.0 mm wide, of homogeneous width, not tapering basally and distally; plants from the northern portion of the Yucatan peninsula .. C. yucatanensis

KEY TO THE SPECIES OF THE COHNIELLA CEBOLLETA COMPLEX

1a. Callus of the labellum 3-partite; callus platform absent; plants from Amazonas State in southern Venezuela C. croizatii
1b. Callus of the labellum 5-partite; callus platform rectangular; plants from northern Colombia, northern and eastern Venezuela, the Guianas (French Guiana, Guyana, and Suriname), and the Lesser Antilles .. 2
2a. Flowers > 31 mm diameter; central lobe of the labellum 14–16 × 18–24 mm; central portion of the callus platform with two globose teeth; plants from Bolivar, Sucre, and Delta Amacuro states in eastern Venezuela .. C. macrocellobella
2b. Flowers < 25 mm diameter; central lobe of the labellum 5–10 × 8–15 mm; central portion of the callus platform smooth; plants of northern Colombia and Venezuela, the Guianas (French Guiana, Guyana, and Suriname), and the Lesser Antilles .. 3
3a. Lateral lobes of the labellum narrowly elliptic (1.8–2.5 mm wide); callus with distal teeth partially separated from the central keel; plants from the Lesser Antilles .. C. juncifolia
3b. Lateral lobes of the labellum oblong, rounded or subquadrate (3.5–5.0 (–7) mm wide); callus with distal teeth completely attached to the central keel, giving the appearance of one unit; plants from northern Colombia, Venezuela, and the Guianas (French Guiana, Guyana, and Suriname) .. 4
4a. Flowers 16–19 mm diameter; lateral lobes of the labellum subquadrate (3.5–3.8 × 3.0–3.5 mm); lateral margins of the callus platform in the labellum ear shaped; callus with distal teeth about the same size as proximal teeth; plants from southern Venezuela and the Guianas (Guyana, Suriname, and French Guiana) .. C. ultrajectina
4b. Flowers 20–25 mm diameter; lateral lobes of the labellum oblong to rounded (5–6 × 4–5(–7) mm); lateral margins of the callus platform of the labellum entire and truncated; callus with distal teeth twice smaller than proximal teeth; plants from northern Colombia and northern Venezuela .. C. cebolletta

KEY TO THE SPECIES OF THE COHNIELLA CEPULA COMPLEX

1a. Callus composed of 5 teeth or keels, provided with lateral extensions conical of the callus at each side of the labellar isthmus; proximal lobes of the column wings relatively large (3.5–5.0 × 2.0–2.5 mm); labellar isthmus relatively broad [3(3–4)–6 mm wide]; base of column conspicuous, flat, subquadrate; plants from the Caatinga region of NE Brazil .. C. caatingaensis
1b. Callus composed of 3 teeth or keels, without lateral extensions of the callus; proximal lobes of the column wings smaller (0.8–3.0 × 1.2–2.0 mm); labellar isthmus relatively narrow [1.7–3.5 mm wide]; base of column short and inconspicuous, concave; plants from elsewhere in Brazil, Peru, Bolivia, Paraguay, and Argentina .. 2
2a. Flowers large, 30–37 mm long from the apex of the dorsal sepal to the apex of the central lobe of labellum; isthmus long and proportionally narrow, 2.5–6 × 2–3.5 mm; plants from the Amazonian Basin in Brazil, known also from a single locality in Amazonian Bolivia C. sprucei
2b. Flowers small, (18–)20–24(–26) mm long from the apex of the dorsal sepal to the apex of the central lobe of labellum; isthmus shorter and proportionally broader 2–4 × 1.7–2.0(–3) mm; plants from elsewhere in South America mostly from the southern portion of the Amazon Basin .. C. cepula
Cohniella aguirrei (Königer) König, Arcula 10: 280. 2000. Fig. 3A.
Distribution: Endemic to Colombia.

Distribution: Endemic to Venezuela.

Basionym: *Oncidium ascendens* Lindl., Edwards's Bot. Reg. 28: sub t. 4. 1842. TYPE: GUATEMALA. Without any other locality, Apr 1841, K. T. Hartweg s.n. (Holotype: K-Lindl.). Fig. 3C.

Cohniella quekettioides (Rchb.f.) Pitzer, Nat. Pflanzenfam 2(6): 194. 1889.

Distribution: Mexico, Guatemala, El Salvador, Honduras, Nicaragua, and Costa Rica.

Distribution: Endemic to Brazil.

Basionym: *Epidendrum cebolleta* Jacq., Enum. Syst. Pl. 30. 1760. TYPE: COLOMBIA. [Bolívar], Cartagena [Carthagæanae]. 1758, *N. j. von Jacquin s.n.* (Holotype: not located and most likely lost; Lectotype: Select. Stirp. Amer. Hist., ed. 2, t. 217 [text on page 111], 1781, designated, albeit incorrectly, by Garay and Sweet 1974: 205; amended lectotype: Select. Stirp. Amer. Hist. [text on pages 230–231] t. 131, Fig. 2, 1763), designated by Carnevali et al., 2010). Fig. 3G.

Distribution: Endemic to southeast Brazil.

Cohniella biorticulbaris Balam & Cetzal, Brittonia 62(2): 162 (-163; figs. 2A–G). 2010. TYPE: MEXICO. Querétaro: Municipio Landa de Matamoros, Camino de Matzacintla al Río Moctezuma, 21’20°4”N, 99’20°4”W, 1100 m, cañada orientada SE con vegetación de bosque tropical caducifolio sobre laderas de roca caliza; colectada originalmente en el año 2006 por I. M. Ramírez (#1432); floreciendo en cultivo el 10 Marzo 2008, G. Carnevali & I. M. Ramírez 7308 (Holotype: CICY; Isotypes: AMES, AMO, MEXU, SEL, QMEX, US). Fig. 3D.
Distribution: Endemic to Mexico.

Basionym: *Oncidium brachyphyllum* Lindl., Edwards's Bot. Reg. 28: sub t. 4. 1842. TYPE: MEXICO. Without any other locality, K. T. Hartweg s.n. (Holotype: K-Lindl.). Fig. 3E.
Distribution: Mexico, Guatemala, El Salvador, Honduras, Nicaragua, and Costa Rica.
FIGURE 3. Floral morphology. A, Cohniella aguirrei (Königer) Königer (Königer 95 M); B, Cohniella amazonica Cetzal & Carnevali (Carnevali 3080 CICy); C, Cohniella ascendens (Lindl.) Christenson (Cetzal 3 CICY); D, Cohniella biorbicularis Balam & Cetzal (Carnevali & Ramírez 7308 CICY); E, Cohniella brachyphylla (Lindl.) Cetzal & Carnevali (Carnevali 7310 CICY); F, Cohniella caatingaensis Cetzal, V.P.Castro & Marçal (Paiva s.n. CICY); G, Cohniella cebolleta (Jacq.) Christenson (Carnevali 7222 CICY); H, Cohniella cepula (Hoffmanns.) Carnevali & G.A.Romero (Carnevali & Ramírez 7367 CICY); I, Cohniella helicantha (Kraenzl.) Cetzal & Carnevali (Carnevali 7027 CICY); J, Cohniella jonesiana (Rchb.f.) Christenson (Kennedy s.n. AMES); K, Cohniella juncifolia (L.) Cetzal & Carnevali (Duss 2078 NY); L, Cohniella lacera (Lindl.) Cetzal (Carnevali 7311 CICY). Photographs: [A–E, G–I, K–L] W. Cetzal-Ix, [F] V. Paiva-Castro, [J] G. Kennedy.
Cohniella cepula (Hoffmanns.) Carnevali & G.A.Romero, Brittonia 62(2): 167. 2010. Fig. 3H.

Oncidium wittii Oppenheim, Orchis 10: 93. 1916. TYPE: Bolivia. Río Iténez, Ost s.n. (Holotype: B, destroyed; lectotype: designated by Carnevali et al., 2010; plate 4, Orchis 10, No. 5, Tafel IV, Fig. 1. 1916; Epitype: designated by Carnevali et al., 2010; Bolivia, Santa Cruz: Provincia Andrés Ibáñez, 12 km de Santa Cruz, 11 August 1987, M. H. Nee 35623 [NY]).

Distribution: Peru, Bolivia, Brazil, Paraguay, and Argentina.

Distribution: Endemic to Venezuela.

Cohniella helicantha (Kraenzl.) Cetzal & Carnevali, J. Torrey Bot. Soc. 137(2–3): 210. 2010. Fig. 3i.

Basionym: Oncidium helicanthum (Kraenzl., Pflanzenr. (Engler) 95: 281. 1922. TYPE: COLOMBIA. Without any other locality or collector (Holotype: B, destroyed; Lectotype, designated by Carnevali et al., 2010, Das Pflanzenreich (A. Angler) heft 80, 4, 50: 282, Fig. 24C, a–d. 1922).

Distribution, Costa Rica, Panama, and Colombia.

Cohniella jonesianae (Rchb.f.) Christenson, Lindleyana 14: 177. 1999. Fig. 3J.

Distribution: Bolivia, Brazil, Paraguay, and Argentina.

Cohniella juncifolia (L.) Cetzal & Carnevali, *Sys. Bot.* 38(3): 614. 2013. Fig. 3K.

Distribution: Endemic to the Lesser Antilles.

Cohniella lacera (Lindl.) Cetzal, *Ann. Bot. Fenn.* 49(1–2): 139. 2012. Fig. 3L.

Distribution: Endemic to Panama.

The type specimen of *Cohniella croatii* can be distinguished from *C. laceras* by minor morphological variations; flowers of *C. croatii* are only slightly larger in the central lobe (“middle lobe”) of the labellum: 11.5 × 18 mm vs. 7–10 × (12–)14–16 in *C. laceras* (Cetzal-Ix et al., 2014).

Distribution: Only known from type material from Mexico.

Distribution: Only known from type material from Mexico.

Cohniella macrocebolleta Cetzal & Carnevali, *Sys. Bot.* 38(3): 616. 2013. TYPE: VENEZUELA. Sucre: vecindades de la ciudad de Carúpano, aprox. 10°40’12’’N, 63°13’48’’W, 50–100 m, epífta colectada originalmente por Agustín Prieto; flores tomadas en una exposición de orquídeas en Maracay, 22 May 2007, *sub G. Carnevali 7220* (Holotype: VEN; Isotypes: AMES, CICY, MO). Fig. 4B.

Distribution: Endemic to Venezuela.

Cohniella nuda (Bateman ex Lindl.) Christenson, *Lindleyana* 14: 177. 1999. Fig. 4C.

Figure 4. Floral morphology. A, Cohniella leptotifolia Cetzal & Carnevali (Carnevali & Gómez-Juárez 6903 CICY); B, Cohniella macrocebolleta Cetzal & Carnevali (Carnevali 7220 CICY); C, Cohniella nuda (Bateman ex Lindl.) Christenson (Carnevali 7283 CICY); D, Cohniella pendula Carnevali & Cetzal (Carnevali & Ramírez 6897 CICY); E, Cohniella sprucei (Lindl.) König & Pongratz (Kennedy s.n. AMES); F, Cohniella stacyi (Garay) Christenson (Kennedy s.n. AMES); G, Cohniella ultrajectina (Pulle) Cetzal & Carnevali (Prop. 575/60 NY); H, Cohniella yucatanensis Cetzal & Carnevali (Cetzal 22 AMES); I, Cohniella × francoi Cetzal & Carnevali (Pupulin s.n. sub Carnevali 7257 CICY); J, Lophiarella flavovirens (L.O.Williams) Carnevali & Balam (Carnevali 7269 CICY); K, Lophiarella microchila (Bateman ex Lindl.) Szlach., Mytnik & Romowicz (Carnevali 7643 CICY); L, Lophiarella splendida (A. Rich. ex Duch.) Carnevali & Cetzal (Carnevali 7232 CICY). Photographs: [A–D, G–L] W. Cetzal-Ix, [E–F] G. Kennedy.

Distribution: Eastern Panama, northern Colombia, and Venezuela.

Cohniella alleni is no doubt referable to *Cohniella nuda*. The latter is characterized by its minute column variation shown in Dunsterville and Garay, 1979: 670). The type of *Cohniella alleni*, the authors of which compared it to *C. cebolleta* (as “*C. cebolleta*”), a species here referred to the *Cohniella ascendens* complex. The “central lobe apically retuse, not bifid…” (Kolanowska et al., 2016) is simply a morphological variation (see figures in Dunsterville and Garay, 1979: 670; Carnevali et al., 2010: 159, figure 1; Cetza-Ix, 2012: 142, figure 3).

The type of *C. christensoniana* also agrees closely with *C. nuda* (see diagnostic characters above and morphological variation shown in Dunsterville and Garay, 1979: 670).

Distribution: Endemic to Mexico.

Cohniella sprucei (Lindl.) König & Pongratz, Arcula 10: 280. 2000. Fig. 4E.

Distribution: Bolivia and Brazil.

Cohniella stacyi (Garay) Christenson, Lindleyana 14: 177. 1999. Fig. 4F.

Distribution: Peru and Bolivia.

Cohniella ultrajectina (Pulle) Cetzal & Carnevali, Sys. Bot. 38(3): 618. 2013. Fig. 4G.

Basionym: *Oncidium ultrajectinum* Pulle, Rec. Trav. Bot. Neerl. 4: 121. 1907. TYPE: SURINAME. “Cultivated at the Utrecht Botanical Garden from a plant coming from Suriname as a gift from v. Asch v. Wijck, the Governor of the colony, to our University” (Holotype: presumably at U, not seen).

Distribution: Venezuela, Guyana, Suriname, and French Guiana.

Isotypes of *Cohniella yuroraensis* at AMES and NY were cited under _C. ultrajectina_ in Cetzal-Ix et al. (2013).

Cohniella yucatanensis Cetzal & Carnevali, J. Torrey Bot. Soc. 137(2–3): 206 (-210; fig. 9). 2010. TYPE: MEXICO. Yucatán: Municipio Mérida, Dzityá, alrededores del Cementerio del pueblo, 21°25′95″N, 89°40′25.54″W, collected by Gabriel Caceres Hernández, flowered in cultivation 20 Apr. 2009, W. Cetzal 22 (Holotype: CICY; Isotypes: AMES, CICY- spirit collection). Fig. 4H.

Distribution: Endemic to Mexico.

Cohniella × francoi Cetzal & Carnevali, Phytotaxa 144(2): 47–54, f. 1A–I, 2B1–B5, 4A–F, 5B. 2013. TYPE: COSTA RICA. Guanacaste: near Santa Rosa National Park, 19 February 2009, F. Pupulin s.n. sub G. Carnevali 7257 (Holotype: CICY; Isotypes: AMES, JBL). Fig. 4I.

Distribution: Costa Rica.

Distribution: Endemic to Bolivia.

Distribution: Southwestern Mexico to northwestern Nicaragua. Fig. 5.
KEY TO THE SPECIES OF *LOPHIARELLA*

1a. Pseudobulbs usually subquadrate, with the abscission layer usually straight, strongly compressed laterally even when turgid; ovary with pedicel 35–40 mm long, ovary 9–12 mm long; flowers large and very showy, 30–50(–70) mm diameter; petals and sepals subequal, oblong, not clawed basally, yellow with transversal red-brown bars; labellum yellow, exceeding 25 mm long, central lobe well-developed, suborbicular to subquadrate, truncate; callus composed of three teeth; column wings hemicircular; column sessile; pollinarium with a short, triangular tegula, which is about as long as the viscidium *L. splendida*

1b. Pseudobulbs usually subspheroid, with the abscission layer always curved, slightly compressed laterally (only when dry); ovary with pedicel 15–25 mm long; ovary 3.0–5.5 mm long; flowers smaller and less showy, 20–28 mm diameter; petals and sepals different, sepals broader and with more developed claws, broadly elliptic to suborbicular, strongly clawed basally, color is green-yellow to apple green, with poorly developed transversal red-brown bars or, more commonly, blotches or spots of pale to dark reddish-brown, often the whole surface covered in the darker hue; labellum white with pink or with red-crimson speckles or blotches, when forcefully spread 6–7 mm long; central lobe strongly reduced, triangular, acute; callus more complex with several teeth; column wings triangular, acute, column elongate, clawed; pollinarium with oblong-linear tegula, much longer than the viscidium 2

2a. Plants relatively small; pseudobulbs 1.5–3.0 × 1.0–2.5 cm and leaves 15–24 × 2.5–4.0 cm, coriaceous; inflorescences borne on the fully mature pseudobulb, peduncle 5–7 mm, thinly covered with a waxy layer; ovary with pedicel 20–25 mm long; perianth segments apple green with pale, matte red-brown speckles or blotches, the apices of the petals always totally green; both sepals and petals strongly clawed, the claw accounting for ca. 1/3 total length of the segments; labellum when viewed from above triangular in general profile, white with pale rose spots and blotches and some yellow on the callus; lateral lobes relatively large, reniform-dolabriform with a large, retrorse, rounded proximal lobe and a smaller, triangular porrect, distal lobe, along with the short apical lobe giving the impression of an apically 3-dentate labellar apex; disc with five, large, +/- independent, conspicuous teeth; pollinarium with linear tegula at least twice as long as the pollinia *L. flavovirens*

2b. Plants relatively large; pseudobulbs 3.0–4.5 × 2.5–4.0 cm and leaves (12–)22–30 × 4–7(–10) cm, thickly fleshy-coriaceous; inflorescences borne on the immature pseudobulb, peduncle thicker, 10–15 mm diameter, densely covered with a layer of wax conveying a heavily glaucous aspect; ovary with pedicel 15–18 mm; perianth segments pale yellow green, heavily blotched with darker red-brown, often the whole segment covered in the darker hue; sepals clawed, the claw accounting for ca. 1/4 total length of the segments, petals basally cuneate, not clawed; labellum when viewed from above transversely oblong or broadly ovate in general profile; white with dark wine red or red-crimson blotches, often totally covered with the darker hue; lateral lobes proportionally smaller, reniform with a small, rounded, retrorse proximal lobe and a larger, subtriangular oblique, porrect distal lobe; disc with a massive callus made up of three large blunt teeth, which are apically confluent on the distal portion of the disc, proximally with several much smaller verrucae on its surface, the two lateral teeth along with the small apical lobe giving the impression of an apically 3-dentate labellar apex; pollinarium with an oblong-obovate tegula about as long as the pollinia *L. microchila*

Lophiarella flavovirens (L.O.Williams) Carnevali & Balam, Sys. Bot. 38(1): 53. 2013. Fig. 4J.

Distribution: Endemic to Mexico.

Lophiarella microchila (Bateman ex Lindl.) Szlach., Mytnik & Romowicz, Polish Bot. J. 51: 54. 2006. Fig. 4K. Basionym: *Oncidium microchilum* Bateman ex Lindl. Edwards’s Bot. Reg. 26: Misc. 82. 1840. TYPE: GUATEMALA. G. U. Skinner s.n. (Holotype: P [P00437730]).

Distribution: Mexico, Guatemala, El Salvador, and Honduras.

Distribution: Guatemala, El Salvador, Honduras, and Nicaragua (A. Heller 3090 SEL).

Lophiarias Raf., Fl. Tellur. 4: 40. 1838. TYPE: *Lophiarias fragans* Raf. [= *Lophiarias lanceana* (Lindl.) Braem].

Trichocentrum Poepp. & Endlich. pro parte, sensu Williams et al., 2001; Chase et al., 2003, 2005, 2009.

Distribution: Southern Florida in the United States of America, the West Indies, and northern Mexico to southern Brazil and northern Argentina. Fig. 6.

KEY TO THE SPECIES OF LOPHIARIS SPECIES AND NATURAL HYBRIDS

1a. Flowers < 10 mm diameter; plants from south of the Amazon River ... 2
1b. Flowers > 15 mm diameter; plants from Florida (USA), Mexico, Central America, South America north of the Amazon River, and the Antilles .. 4
2a. Callus pulvinate; column wings downward; plants restricted to southeast Brazil .. L. schwanbachiae
2b. Callus smooth; column wings downward and upward; plants from north, south, and west of south of the Amazon River .. L. morenoi
3a. Flowers white; column wings upward .. L. pumila
3b. Flowers yellow with pink or red spots; column wings downward ... L. lanceana
4a. Flowers > 47 mm diameter; callus 3–3.5 teeth; plants from north and south of the Amazon River L. lanceana
4b. Flowers < 45 mm diameter; callus 5–8-teeth; plants from Florida (USA), Mexico, Central America, north and south of the Amazon River, and the Antilles .. 5
5a. Leaves <11 cm long; inflorescences usually shorter than the leaves, rarely longer; flowers non-resupinate; isthmus of the labellum < 0.5 mm long; column wings triangular; plant from west and southwest of north and south of the Amazon River .. L. nana
5b. Leaves >15 cm long (except in *L. oestlindiana* of 7–30 cm long); inflorescences usually longer than the leaves, rarely shorter; flowers resupinate; isthmus of the labellum > 1 mm long; column wings dolabelliform; plants from Florida (USA), Mexico, Central America, north of the Amazon River, and the Antilles .. 6
6a. Flowers 30–45 mm diameter, yellow with bright red spots; lateral lobes of the labellum with claw; disc callus with conical accessories callus at each side of the labellar isthmus; plants from evergreen cloud and pine-oak forests at elevations of 800–2800 m .. 7
6b. Flowers 25–35(–40) diameter, pink, brown or white with pink, purple, reddish, brown or white spots or dots; lateral lobes of the labellum without claw (truncated); disc callus without conical accessories callus at each side of the labellar isthmus (smooth); plants usually from tropical rain and deciduous forests at elevations of 0–1200 m .. 10
7a. Sepals and petals immaculate or with a large reddish or light brown stain; width of the central lobe much larger than the length through the apices of the lateral lobes of the labellum .. 8
7b. Sepals and petals with bright red or dark brown spots; width of the central lobe much similar than the length through the apices of the lateral lobes of the labellum .. 9
8a. Flowers 30–34 mm diameter; callus with three small accessories teeth between the proximal and distal teeth; proximal teeth subcylindrical, ascendant and with four teeth; plants from Sierra Madre del Sur from Mexico .. L. chrysops
8b. Flowers 36–41 mm diameter; callus without accessories teeth between the proximal and distal teeth; proximal teeth ovoid, semifused and with 10–15-teeth; plants from Sierra Madre de Chiapas or Cordillera Central from Mexico, Guatemala, and El Salvador .. L. bicallops
KEY TO THE SPECIES OF **LOPHIARIS** SPECIES AND NATURAL HYBRIDS CONT.

9a. Lateral lobes of the labellum obovate; disc of the callus with lateral thickenings; central lobe of the labellum 7–9 × 16–25 mm; isthmus of the labellum much longer than wide (5.0–6.5 × 3.5–4.0 mm); plants from Sierra Madre del Sur, Sierra Madre Occidental, and Eje Neovolcánico Transversal of Mexico .. **L. pachyphylla**

9b. Lateral lobes of the labellum orbicular; disc of the callus without lateral thickenings (smooth); central lobe of the labellum 10–15.5 × 20–25 mm; isthmus of the labellum about as long as wide (3–4 × 3–4 mm); plants from Sierra Madre of Chiapas or Cordillera Central of Mexico, Guatemala, and El Salvador .. **L. cavendishiana**

10a. Sepals and petals white cream or whitish green; sepals oblong-ovoid with the smooth margins; petals subquadrate to oblong ovoid; labellum white or white cream without spots ... 11

10b. Sepals and petals white with red or brown spots; sepals oblong with undulate margins (smooth in **L. lindenii** and **L. oestlundiana**); labellum white, brown with pink, purple, reddish, brown or white spots or dots or reddish or brown without spots ... 13

11a. Labellum with long isthmus (4–5 mm long); labellum ca. 15 mm long; plants from Honduras and Nicaragua **L. aurissasinora**

11b. Labellum with a very short isthmus (0.5–2 mm long); labellum not exceeding 10 mm long; plants from México 12

12a. Pseudobulbs and leaves rarely more than 25 cm tall; claw of the dorsal sepal very short and wide (0.5 mm long); claw of the labellum central lobe 1–2 mm long; endemic to Veracruz .. **L. straminea**

12b. Pseudobulbs and leaves more than 30 cm tall; claw of the dorsal sepal long and thin (1.5 mm long); claw of the labellum central lobe 4–5 mm long; endemic to Chiapas ... **L. sierracaracolensis**

13a. Central lobe of the labellum ovate or transversally elliptical, reddish or red wine without spots on its surface 14

13b. Central lobe of the labellum transversally elliptical, brown without spots on its surface or white, yellow or pink with reddish or brown spots on its surface .. 17
KEY TO THE SPECIES OF *LOPHARIS* SPECIES AND NATURAL HYBRIDS CONT.

14a. Lateral lobes of the labellum brown at base and apex; base of the disc callus and proximal teeth brown; isthmus 1–2 mm long; plants from coastal pacific in Jalisco and Nayarit States in Mexico .. L. oestlundiana

14b. Lateral lobes of the labellum yellow at base and at the apex; base of the disc callus and proximal teeth yellow or yellow with reddish spots; isthmus 0.1–0.2 mm long; plants from coastal Atlantic in south of Mexico (Veracruz, Tabasco, Oaxaca, Chiapas, Quintana Roo, Campeche, and Yucatan states), Belize, Guatemala, and Honduras ... 15

15a. Petals and sepals white or greenish white with brown or reddish blotches in 2/3 of its surface, oblong-ovate with smooth margins; central lobe of the labellum ovate; proximal teeth of the callus of the labellum yellow without spots; isthmus 0.5–0.6 mm long L. lindenii

15b. Petals and sepals white with reddish or brown continuous blotches in 2/3 of its surface or purple with continuous blotches or spots, oblong with undulate margins; central lobe of the labellum widely oblate; proximal teeth of the callus of the labellum yellow with reddish spots; isthmus 0.1–0.2 mm long 16

16a. Ovary and pedicel 20–21 mm long; sepals and petals white with reddish or brown continuous blotches in 2/3 of its surface; dorsal sepal 8–10 mm long; central lobe of the labellum 5–6 × 11–12; central keel of the callus parallel to distal teeth L. lindenii × L. lurida

16b. Ovary and pedicel 16.5–18 mm long; sepals and petals white with reddish or purple continuous blotches or spots; dorsal sepal 5.5–6.5 mm long; central lobe of the labellum 3–3.3 × 6.7–7 mm; central keel of the callus parallel to proximal and distal teeth .. L. lurida × L. oerstedii

17a. Central lobe of the labellum 1/2, 1 or 3 times wider than through the apices of the lateral lobes of the labellum .. 18

17b. Central lobe of the labellum more or less similar or 1/4 times wider than through the apices of the lateral lobes of the labellum .. 25

18a. Central lobe of the labellum brown, dull brown, brown-greenish, yellow brown, reddish brown, or orange brown without spots 19

18b. Central lobe of the labellum white or yellow, with brown or dark brown spots, or reddish brown with white margins 23

19a. Sepals and petals white on the whole surface of the blade and with pale or dark pink confluent or dispersed spots 20

19b. Sepals and petals white or dull yellowish at base and margins of the blade and the rest of the blade, reddish brown, pale grayish green or light yellow with dark red or light brown spots or blotches ... 21

20a. Proximal teeth of the callus 6-partite; distal teeth of the callus 2-partite; central keel of the callus 1 or 2 times smaller than the length of the distal teeth of the callus; plants from the Atlantic drainage in the states of San Luis Potosí, Tamaulipas, Queretaro, and Veracruz in Mexico .. L. cosmosymbephora

20b. Proximal section of the callus 8–10 parted; distal teeth of the callus 3-partite; central keel of the callus similar in length up to 3/4 the length of the distal teeth of the callus; plants from the Pacific drainage in the states of Michoacán, Guerrero, Oaxaca, and Chiapas in México. .. L. andreaeana

21a. Central lobe of the labellum brownish-green (chocolate), or apically mustard-yellow, with a matte texture; proximal and distal teeth and central keel of the callus parallel to lateral lobes of the labellum; plants from western Mexico (Jalisco and Nayarit states) L. nataliae

21b. Central lobe of the labellum brown, greenish brown or dull brown; proximal teeth of the callus parallel to the lateral lobes of the labellum; plants from central and southern Mexico (Veracruz, Estado de Mexico, Oaxaca, Chiapas, Tabasco, Campeche, Quintana Roo, and Yucatan states) to Venezuela and Trinidad and Tobago .. L. lurida

22a. Petals and sepals white with brown or reddish brown spots; central keel of the labellum brown or greenish brown, ovary with pedicel 25–32 mm long; isthmus of the labellum 5–8 (–10) mm long; plants from the Pacific drainage in the states of Michoacán, Guerrero, Oaxaca, and Chiapas in México. ... L. lurida × L. tapiae

22b. Petals and sepals dull yellowish with brown continuous blotches or confluent brown spots; central lobe of the labellum dull brown; ovary with pedicel 15–16 mm long; isthmus of the labellum 4.0–4.5 mm long. ... L. lurida × L. maculata

23a. Central lobe of the labellum yellow cream o light brown with dark brown or dark red spots all over its surface; plants from Florida (USA), Greater and Lesser Antilles .. L. maculata

23b. Central lobe of the labellum white or light brown with light yellow or yellowish spots or with brown spots dispersed all over its surface; plants from Central America (Nicaragua) and north of South America (Venezuela) ... 24

24a. Ovary with pedicel 11–15 mm long; central lobe of the labellum light yellow with brown spots dispersed all over its surface; lateral lobes of the labellum 2.0–2.2 mm long; plants from Central America (Nicaragua) ... L. crispiflora × L. lurida

24b. Ovary with pedicel 24–25 mm long; central lobe of the labellum light yellow with brown or yellowish spots confluent on all of its surface; lateral lobes of the labellum 3.5–4.0 mm long; plants from north of South America (Venezuela) ... L. carthagomensis × L. lurida

25a. Ovary with pedicel 34–37 mm long .. 26

25b. Ovary with pedicel 17–30 mm long ... 27

26a. Flowers yellow with dark brown spots and blotches; petals and sepals almost perpendicular to the labellum and the main axis of the flower, thus subparallel to each other; central labellum lobe yellow with brown tinges; plants restricted to the areas of the Candelaria and Palizada rivers, Campeche, Mexico L. tapiae

26b. Flowers white with lilac or pink spots, rarely flowers concolor; sepals and petals at each side of the flowers at approximately 45° to the main axis of the flower; central lobe of the labellum pale pink tinged; plants restricted to NW Chiapas and SE Quintana Roo, Mexico L. teaboana

27a. Lateral lobes of the labellum bright yellow; calyx of the labellum bright yellow; plants restricted to the NW section of the Mexican Yucatan Peninsula .. L. andrewsiae

27b. Lateral lobes of the labellum white, green with dark orange, red brown, pale pink, magenta or wine spots or pale straw-yellow with reddish spots; calyx of the labellum white, pale straw-yellow or purple with pink, magenta or reddish-brown spots; plants from Mexico (SE Oaxaca, N Chiapas, Tabasco, and the Yucatan Peninsula southward) Central America and northern South America .. L. andrewsiae

28a. Central lobe of the labellum brown or reddish brown with white margins. .. L. x oerstedii

28b. Central lobe of the labellum white, yellow or greenish with red brown, magenta or pale pink spots in 2/3 of its surface or red brown, magenta or brown spots dispersed across its surface or pink to pale pink spots on almost the entirety of its surface .. L. x oerstedii

29a. Distal teeth of the callus parallel to distal teeth of the labellum; central keel of the callus parallel to distal teeth; plants from the Pacific drainage in the states of Jalisco, Nayarit, and Sinaloa, Mexico .. L. x oerstedii

29b. Distal teeth of the callus 2–3 times longer than distal teeth of the labellum; central keel of the callus parallel to proximal and distal teeth; plants from the Pacific drainage in the states of Jalisco, Nayarit, and Sinaloa, Mexico L. x oerstedii
KEY TO THE SPECIES OF LOPHIARIAS SPECIES AND NATURAL HYBRIDS CONT.

29a. Flowers white or greenish with red brown, wine or magenta spots; central keel of the callus parallel to proximal and distal teeth; proximal teeth with the apex with more than 10 small, conical and irregular teeth; central keel compressed and with more than six small conical teeth; plants from northern Colombia and Venezuela L. carthagensis

29b. Flowers white or yellow with pink, pale pink, magenta, red or brown spots; central keel of the callus parallel to distal teeth; proximal teeth conical to ovoid with surface of the apex smooth or with 3–6 small, globose teeth; central keel compressed with one or two conical teeth; plants from northwestern Mexico to northeastern Panama ... 30

30a. Sepals and petals white with pink or pale pink spots; spots heterogeneously dispersed over the whole surface; proximal teeth of the callus ovoid with 3–6 small globose teeth on the surface of the apex; central keel of the callus with one or two teeth; plants from eastern Honduras and central-northeastern Nicaragua to northwestern Panama .. 31

31a. Flowers 16–23 mm diameter, white with red brown, magenta or pale pink spots; spots heterogeneously dispersed over the whole surface; central lobe of the labellum yellow with red or brown spots dispersed across its surface; proximal teeth of the callus ovoid with 3–6 small globose teeth on the surface of the apex; central keel of the callus with one or two teeth; plants from eastern Honduras and central-northeastern Nicaragua to northeastern Mexico to southwestern Honduras and Nicaragua ... 30

31b. Sepals and petals white or yellow with red brown, magenta, red, brown or pale pink spots; spots confluent or with a continuous and homogeneous pattern or covering almost the whole surface or heterogeneously dispersed over the whole surface, always non-confluent; central lobe white with a red brown, magenta or pale pink spot in 2/3 of its surface; proximal teeth of the callus ovoid with 3–6 small globose teeth on the surface of the apex; central keel of the callus with one or two teeth; plants from eastern Honduras and central-northeastern Nicaragua to northwest of Panama .. 31

31a. Flowers 16–23 mm diameter, white with red brown, magenta or pale pink spots; sepals and petals with spots confluent or with a continuous and homogeneous pattern or covering almost the whole surface; dorsal sepal 8–10 x 4–6; central lobe of the labellum white with a red brown, magenta or pale pink spot in 2/3 of its surface; proximal teeth of the callus ovoid with 6 small globose teeth on the surface of the apex; central keel of the callus with one or two teeth; ismhusm of the labellum 2.5–3.5 mm width; plants from eastern Honduras and central-northeastern Nicaragua .. L. crispiflora

Lophiaris andreana (Cogn.) R.Jiménez & Carnevali, Harvard Pap. Bot. 6(1): 284. 2001. Fig. 7A.
Distribution: Endemic to Mexico.
An analysis of the protologue T. perezi shows it is only a pale-colored form of the variable L. andreana. Thus, it is here referred to the synonymy of the latter.

Distribution: Guatemala, El Salvador, Honduras and Nicaragua.

Distribution: Mexico (without exact origin).

Lophiaris bicallosa (Lindl.) Braem, Schlechteriana 4(1–2): 17. 1993. Fig. 7D.
Distribution: Mexico, Guatemala, El Salvador, and Honduras.

Lophiaris carthagenense (Jacq.) Braem, Schlechteriana 4(1–2): 17. 1993. Fig. 7E.
Homotypic synonyms: Oncidium carthagenense (Jacq.)
FIGURE 7. Floral morphology. A, Lophiaris andreana (Cogn.) R.Jiménez & Carnevali (Cetzal 4 CICY); B, Lophiaris andrewsiae R.Jiménez & Carnevali (Cetzal s.n. CICY); C, Lophiaris aurisasinora (Standl. & L.O.Williams) Braem (Vega s.n. CICY); D, Lophiaris bicallosa (Lindl.) Braem (Vega s.n. CICY); E, Lophiaris carthagenenesis (Jacq.) Braem (Noguera-Savelli et al. 712 VEN); F, Lophiaris cavendishiana (Bateman) Braem (Carnevali 7264 CICY); G, Lophiaris chrysops (Rchb.f.) R.Jiménez & Carnevali (Kennedy s.n. AMES); H, Lophiaris cosymbephora (C.Moren) R.Jiménez & Carnevali (Carnevali 7251 CICY); I, Lophiaris crispiflora (Schltr.) Balam & Cetzal (Bogarin & Papulin 2228 JBL); J, Lophiaris lanceana (Lindl.) Braem (Kennedy s.n. AMES); K, Lophiaris lindenii (Brongn.) Braem (Cetzal 373 CICY); L, Lophiaris lurida (Lindl.) Braem (Noguera & Cetzal 1020 CH). Photographs: [A–B, E–F, K–L] W. Cetzal-Ix, [C–D] H. Vega, [G, J] G. Kennedy, [H] G. Carnevali, [I] Jardin Botánico Lankester (http://www.epidendra.org/).

Distribution: Endemic to Mexico.

Lophiaris cavendishiana (Bateman) Braem, Schlechteriana 4(1–2): 17. 1993. Fig. 7F.

Distribution: Mexico, Guatemala, El Salvador, and Honduras.

Lophiaris chrysops (Rchb.f.) R.Jiménez & Carnevali, Harvard Pap. Bot. 6(1): 284. 2001. Fig. 7G.

Homotypic synonym: *Trichocentrum cavendishianum* (Schltr.) Balam & Cetzal, J. Torrey Bot. Soc. 139(1): 14. 2012. Fig. 7I.

Distribution: Eastern Honduras, central-northeastern Nicaragua, and northwest Panama.

Lophiaris lanceanum (Lindl.) Braem, Schlechteriana 4(1–2): 17. 1993. Fig. 7J.

Distribution: Endemic to Mexico.

Lophiaris cosymbephora (C.Morren) R.Jiménez & Carnevali, Harvard Pap. Bot. 6(1): 284. 2001. Fig. 7H.

Distribution: Colombia, Venezuela, Trinidad and Tobago, Guyana, Suriname, and Brazil.
Lophiaris lindenii (Brong.) Braem, Schlechteriana 4(1–2): 19. 1993. [as “lindenii”]. Fig. 7K.

Basionym: Oncidium lindenii Brongn., L’Horticulteur Universel 3: 372–373. 1842. [non Oncidium lindenii Lodd. ex Lindl. Sertum Orchidaceum sub t. 48. 1841. nom. nud.; as “Lindenii”]. TYPE: MEXICO. [Campeche:] Habite aux environs de Campeche (protologue), L. Linden s.n. (Holotype: BR; drawing at AMES [102500]).

Distribution: Mexico, Belize, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Colombia, Venezuela, and Trinidad and Tobago.

Lophiaris maculata (Aubl.) Ackerman, Lindleyana 15(2): 92. 2000. Fig. 8A.

Basionym: Epidendrum maculatum Aubl., Hist. Pl. Guiane 2: 825. 1775. TYPE: presumably collected in St. Vincent (St. Vincent and the Grenadines), Pl. Amer. 173. t. 178, fig. 2. 1758; Lectotype, designated by Ackerman, 2014: 537: Helleborine maculata, follis aloe carinatis in Burman, Pl. Amer. t. 178, fig. 2. 1758; Lectotype, designated here: St. John, Carlota, R. Howard 11283 (AMES)).

Heterotypic synonyms: Epidendrum undulatum Sw., Prodr. 122. 1788. TYPE: JAMAICA. O. Swartz s.n. (Lectotype, designated by Ackerman, 2014: 537: S; Isolectotypes: UPS [not seen], G [not seen]).

Distribution: Florida (USA) and the Greater (Cuba and Jamaica) and Lesser (Martinique, San Vicent, and The Grenadines) Antilles.

Lophiaris morenoi (Dodson & Luer) Braem, Schlechteriana 4(1–2): 19. 1993. Fig. 8B.

Basionym: Oncidium morenoi Dodson & Luer, Selbyana 1: 44. 1976. TYPE: BOLIVIA. 10 km east of Santa Cruz, flowering in cult. [Sic.], F. Fuchs s.n. (Holotype: SEL-1366).

Distribution: Bolivia, Peru, and Brazil.

Lophiaris nana (Lindl.) Braem, Schlechteriana 4(1–2): 19. 1993. Fig. 8C.

Oncidium patulum Schltr., Orchis 8: 18. 1914. TYPE: Probably Brazil, without locality, date, or collector (Holotype: B, destroyed).

Distribution: Colombia, Venezuela, Guyana, Peru, Bolivia, and Brazil.

Distribution: Endemic to Mexico.

Lophiaris oerstedii (Rchb.f.) R.Jiménez, Carnevali & Dressler, Harvard Pap. Bot. 5(2): 423. 2001. Fig. 8E.

Basionym: Oncidium oerstedii Rchb.f., Bonplandia (Hanover) 2: 91. 1854. TYPE: NICARAGUA, Without locality, “undoubtedly the most beautiful discovery of... Oersted [Unzweifelhaft die schönste Entdeckung des...
Hrar. Dr. A. Oersted],” A. Oersted s.n. (Holotype: W-Reichenbach, not seen, photograph and drawing of holotype at AMES-24182, 39629; photograph at AMO).

Homotypic synonym: Oncidium carthagenense var. oerstedii (Rchb.f.) Lindl., Fol. Orchid. 40. 1855.

Trichocentrum oestlundianum (L.O.Williams) Braem, Honduras, and Nicaragua.

Heterotypic synonyms: Oncidium carthagenense var. oerstedii (Rchb.f.) R.Jiménez & Carnevali, Icon. Orchid. 5–6; ix. 2003.

Distribution: Mexico, Belize, Guatemala, El Salvador, Honduras, and Nicaragua.

Distribution: Brazil, Paraguay, and Argentina.

Lophiaris oestlundiana (L.O.Williams) Braem, Schlechteriana 4(1–2): 19. 1993. Fig. 8F.

Distribution: Endemic to Mexico.

Lophiaris pachyphylla (Hook.) R.Jiménez & Carnevali, Harvard Pap. Bot. 6(1): 284. 2001. Fig. 8G.

Heterotypic synonym: Oncidium pachyphyllum Hook. var. chrysoglossum Rchb.f., Xenia Orch. 1: 237, t. 99, fig. IV, 9–12. 1858. TYPE: Unknown origin (probably Mexico), Herrn Senator Jenisch s.n. (Holotype: W-R No. 7981; slide AMO).

Distribution: Endemic to Mexico.

Distribution: Endemic to Mexico.
Key to the groups of Trichocentrum

1a. Spur gibsous, 2–4 lobed, or clavate ... 2
1b. Spur slender, conic or tubular .. 3
2a. Spur short, less than 5 mm long, 2–4 lobed; labellum elliptic-ovate T. candium group
2b. Spur longer than 10 mm long, clavate; labellum pandurate T. hoegei group (monotypic taxon)
3a. Labellum with two lateral, erect, falcate lobes near the base T. pfavii group
3b. Labellum without lateral, erect, falcate lobes near the base 4
4a. Spur longer or equaling the labellum, flexuous to uncinated 5
4b. Spur shorter than labellum, linear .. 6
5a. Ovary triquetrous; disc thickly bicarinate .. T. pulchrum group
5b. Ovary not triquetrous; disc with two to four slender carinates T. fuscum group
6a. Labellum concave, strongly narrowed above; flowers campanulate, produced on successive inflorescence T. brachyceras group
6b. Labellum flat to slightly convex, with dilated lamina; flowers spreading on 1–2-flowered, simultaneous inflorescences .. T. trigrinum group (monotypic taxon)

Key to the species of the Trichocentrum candidum group

1a. Column wings decurrent, obtuse with introrse apexes; anther cap glabrous; lip marked with broad purple blotches T. papuliniannum
1b. Column wing ascending or porrect, acute, with somewhat revolute apexes; anther cap papillose or hirsute; lip entirely white or with scattered purple spots ... 2
2a. Leaves widely ovate; lip with scattered purple spots T. caloceras
2b. Leaves oblong-elliptic; lip entirely white .. 3
3a. Labellum narrow in the middle; flowers small (sepals and petals to 5–6 mm long); inflorescence erect to patent T. brevii
3b. Labellum elliptic ovate or rhombic; flowers medium to large (sepals and petals longer than 15 mm); inflorescence pendulato 4
4a. Labellum shorter than sepals, acute to obtuse T. capistratum
4b. Labellum longer than sepals, retuse at apex 5
5a. Labellum obovate; column wings entire .. T. candidum
5b. Labellum broadly rhombic; column wings erose at the apex T. cymbiglossum

Key to the species of the Trichocentrum pfavii group

1a. Spur more than 5 mm long; column wings with longitudinal brown stripes .. T. dianthum
1b. Spur less than 5 mm long; column wings white with brown spots at margins ... 2
2a. Labellum flabellate, with very crisped apex; lateral lobes of the labellum digitate ... T. pfavii
2b. Labellum obovate, fleshy, with plane apex; lateral lobes of the labellum short and rounded. .. T. estrellense

Lophiaris tapiae Balam & Carnevali, Acta Bot. Mex. 97: 21 (17–29; Figs. 1–3). 2011. TYPE: MÉXICO. Campeche: Municipio Candelaria, en la perifería del poblado de Candelaria, específicamente a 25 m NE del puente, creciendo sobre árboles o aristas del río Candelaria, remanentes de selva mediana subperennifolia, 18°11′15.20″N, 91°2′55.57″W, 35 m, floreciendo en cultivo en Mérida, Yucatán, México el 9 de noviembre de 2009 de una planta colectada el 21 de julio de 2009, R. Balam, W. Cetzal & G. Cáceres 114 (Holotype: CICY, Isotype: AMO). Fig. 8L.

Distribution: Endemic to Mexico.

Distribution: Mexico, Guatemala, and Honduras.

Distribution: Southwestern Mexico to southern Brazil. Fig. 10.
KEY TO THE SPECIES OF THE *TRICHOCENTRUM PULCHRUM* GROUP

1a. Spur more than twice as long as the labellum .. *T. longicalcaratum*
1b. Spur less than twice as long as the labellum .. 2

2a. Disk of the labellum without keels .. *T. neudeckeri*
2b. Disk of the labellum with keels ... 3

3a. Disk of the labellum with 4 keels; labellum obcordate ... *T. obcordilabium*
3b. Disk of the labellum with 3 keels; labellum obovate ... 4

4a. Keels of the labellum glabrous or minutely puberulent; sepals and petals greenish white without purple spots or blotches *T. viridulum*
4b. Keels of the labellum papillose; sepals and petals greenish white with purple spots or blotches .. 5

5a. Spur 1.5 times longer than the blade of the labellum; keels of the labellum divergent at apex; column wings 3 mm long *T. pulchrum*
5b. Spur as long as the blade of the labellum; keels of the labellum incurved, convergent at apex; column wings 1 mm long *T. loyolicum*

KEY TO THE SPECIES OF THE *TRICHOCENTRUM FUSCUM* GROUP

1a. Inflorescence simultaneously 2–5 flowered ... *T. panduratum*
1b. Inflorescence successive ... 2

2a. Column wings lanceolate to strictly triangular ... *T. albo-coccineum*
2b. Column wings broad, obtuse to truncate at apex .. 4

3a. Disc of the labellum with four keels ... 5
3b. Disc of the labellum with two keels ..
KEY TO THE SPECIES OF THE Trichocentrum fuscum GROUP cont.

4a. Spur as long as the labellum ... T. tenuiflorum
4b. Spur 1.5 times longer than the labellum ... T. recurvum
5a. Disc of the labellum with two keels ... 6
5b. Disc of the labellum with four keels ... 7
6a. Spur about twice long than the labellum ... T. wagneri
6b. Spur as long as the labellum or shorter ... 7
7a. Labellum obovate-oblong ... T. purpureum
7b. Labellum subpandurate ... T. fuscum

KEY TO THE SPECIES OF THE Trichocentrum brachyceras GROUP

1a. Labellum longer than sepals, apiculate, with two distinct keels near the base .. T. brachyceras
1b. Labellum markedly shorter than sepals, minutely retuse, without keels ... T. brevicalcaratum

Trichocentrum albo-coccineum Linden, Belgique Hort. 15: 103. 1865. TYPE: BRAZIL. Amazonas: epiphytic in forest along Rio Negro, G. Wallis s.n. (Holotype: W).
Trichocentrum albopurpureum var. striatum Linden & Barb.Rodr. Lindenia 2: 77, t. 85. 1866.
Trichocentrum alboviolaceum Schltr., Die Orchideen 446. 1927.
Trichocentrum atropurpureum Linden & Rchb.f., Gard. Chron. 219. 1866.

Distribution: Peru, Bolivia, and Brazil.

Distribution: Endemic to Colombia.

Distribution: Endemic to Peru.

Trichocentrum caloceras Endres & Rchb.f., Gard. Chron. 1257. 1871. TYPE: COSTA RICA. “Mr. Endres, the excellent Costa Rica traveller, has found since 1867, in Costa Rica, another Trichocentrum” (holotype presumed to be located at W, not located; lectotype designated by Bogarin and Karremans (2013): Costa Rica, without collecting data, A.R. Endres s.n., illustration kept at W, 00209541). The neotype designation by Pupulin (1995): Costa Rica. Puntarenas: Coto Brus, F. Pupulin and D. Castelfranco 1 (USJ) is rejected by Bogarin and Karremans (2013), as the specimen selected is in conflict with the protologue and the natural distribution of this species. Fig. 9C.

Distribution: Endemic to Costa Rica.

Trichocentrum candidum Lindl., Edwards’s Bot. Reg. 29: Misc. 9. 1843. TYPE: GUATEMALA. Without specific locality, G. U. Skinner s.n. (Holotype: K). Fig. 9D.

Distribution: Mexico, Guatemala, and El Salvador.

Trichocentrum capistratum Linden & Rchb.f., Gard. Chron. 1257. 1871. TYPE: COSTA RICA. Without specific locality. Floreció en el jardín de Linden, Bélgica, 23 September 1868, G. Wallis s.n. (Holotype: W; photo USI).

Heterotypic synonyms: Trichocentrum panamense Rolfe,

Distribution: Endemic to Colombia.

Trichocentrum loyolicum Pupulin, Karremans & G. Merino, Harvard Pap. Bot. 13(2): 220. 2008. TYPE: ECUADOR. Loja: Valladolid, Loyola, 1000–1200 m, collected by G. Merino in 2002, flowered in cultivation, A. Karremans 2133 (Holotype: QCNE; illustration of type; photo of the flower from the plant that served as the holotype). Fig. 9J.

Distribution: Endemic to Ecuador.

Distribution: Endemic to Bolivia.

Distribution: Endemic to Ecuador.

Distribution: Endemic to Peru.

Trichocentrum pfavii Rchb.f. subsp. *pfavii* Gard. Chron., n.s., 16: 70. 1881. TYPE: PANAMA. Chiriquí, without specific locality, 19 November 1980, *R. Pfau* 80 (Holotype: W); Fig. 9J.

Trichocentrum saundersianum Endrés & Rchb.f. ex Pupulin, nom. inval.
Trichocentrum saundersii Endrés & Rchb.f. ex Pupulin, nom. inval.

Trichocentrum zonale Rchb.f., nom. inval.

Trichocentrum pflavii var. album Henderson ex Pupulin, nom. illeg.

Distribution: Costa Rica and Panama.

Heterotypic synonyms: Trichocentrum speciosum Bogarín & Karremans, Herb. H. Königer; illustration of type). Fig. 9K.

Distribution: Endemic to Costa Rica.

Heterotypic synonyms: Orchis punctata Ruiz & Pav. ex Pupulin, nom. inval.

Trichocentrum maculatum Lindl., Orchid. Lindén. 24, No. 127. 1846. **TYPE:** COLOMBIA. Río Hacha, Sierra de Santa Marta, along the Río San Antonio, 1300 m, 1844, *L. Lindén 1666* (Holotype: K; Isotype: BR, P, W; USJ (photo)).

Trichocentrum speciosum Schlim ex Pupulin, nom. inval.

Distribution: Colombia, Venezuela, Ecuador, and Peru.

Trichocentrum pupulinianum Bogarín & Karremans, Lindleyana in Orchids (West Palm Beach) 82(2): 106–108. 2013. **TYPE:** COSTA RICA. Coto Brus, Sabalito, San Miguel, carretera entre Union y Mellizas, 2.5 km después de Unión, orillas de la Quebrada Sereno, 8°51’17.0”N, 82°52’35.2” W, 994 m, bosque muy humedo premontano transicion a pluvial “supra truncos ad ripas silvarum prope San Miguel juxta flumen ad Quebrada Sereno,” 18 April 2011, A.P. Karremans et al. 3963 (Holotype: JBL-spirit; illustration of the plant that served as the holotype). Fig. 9L.

Distribution: Southern Costa Rica and western Panama.

Trichocentrum purpureum Lindl. ex Rchb.f., Gard. Chron. 772. 1854. **TYPE:** GUYANA. *Ex hort. Veitch* (Holotype: K).

Distribution: Endemic to Guyana.

Distribution: Endemic to Guyana.

Distribution: Endemic to Colombia.

Distribution: Brazil.

Literature Cited

Page 170 intentionally left blank.
The genus *Acianthera* Scheidw. (Orchidaceae: Pleurothallidinae) was historically considered a synonym of *Pleurothallis* R.Br. (Luer, 1986; Pupulin et al., 2007). On the basis of the molecular studies of the Pleurothallidinae by Pridgeon et al. (2001), it was re-instated by Pridgeon and Chase (2001) and Pridgeon (2005), and broadened to include the generic concepts of *Cryptophoranthus* Barb. Rodr., *Brenesia* Schltr., and *Sarracenia* Luer. Additional species were subsequently transferred to the genus by several authors, most notably Luer (2004).

Chiron and van den Berg (2012) revised the systematics of *Acianthera* on the basis of a broader molecular study of nrITS by Chiron et al. (2012). The latter especially included Brazilian material, where *Acianthera* is richest in species numbers. The authors expanded the concept of the genus, including into its synonym the genera *Arthrosia* Luer and *Pleurobotryum* Barb.Rodr. A sectional and subsectional classification for the genus was proposed by the authors. However, due to the relatively reduced representation, the phylogenetic placement of the Central American, Antillean and Andean clades of *Acianthera* was not completely resolved.

The relationships of several additional genera with *Acianthera* were subsequently noted. Bogarín et al. (2008) gave formal recognition to the synonymy of *Aberrantia* Luer, as suggested by Luer (2004), Stenzel (2004; 2007) and Karremans (2016) added *Antilla* (Luer) Luyos, following a suggestion by the same Luer (2000). *Apoda-prorepentina* (Luer) Luer, as suggested by Solano-Gómez (2011), and shown by Stenzel (2004) was reconsidered by Karremans and Rincón-González (2015), while *Ogygia* Luer was synonymized by Solano-Gómez (2003; 2015). Close relationships with *Acianthera* of *Didactylus* Luer and *Unguella* Luer were suggested by Luer (2004), while *Dondodia* Luer and *Proctoria* Luer were suggested to be *Acianthera* relatives by Luer (2006), Stenzel (2007) and Karremans (2016). Additionally, the single sequence of *Kraenzlinella* Kuntze analyzed by Pridgeon et al. (2001) was retrieved in a clade together with the genera *Brachionidium* Lindl. and *Myoxanthus* Poepp. & Endl. and therefore *Kraenzlinella* was accepted by Pridgeon and Chase (2001) and Pridgeon (2005). Nevertheless, Karremans (2016) pointed out that additional unpublished DNA data placed genus *Kraenzlinella* in the *Acianthera* affinity, as had already been suggested by Luer (1994) based on morphological similarity.

In an attempt to re-evaluate and clarify the phylogenetic relationships within the *Acianthera* affinity as defined by Karremans (2016), we have reconstructed a DNA-based phylogeny inferred from a combined nrITS and *matK* matrix from a broad set of species. It covers about one third of the ~300 species and most of the generic names proposed within the group. A subgeneric classification of *Acianthera* is proposed.
Plant material in Costa Rica was collected under the scientific permits granted by the Costa Rican Ministry of Environment (MINAE) to researchers at JBL. Individual plants were photographed, illustrated and preserved as spirit specimens (only including flowers and young leaf tissue) in formaldehyde: acetic acid: ethanol (FAA: 53% ethanol, 37% water, 5% formaldehyde and 5% glycerol) for future reference, deposited at JBL-spirit and L-spirit. The DNA extracts were preserved at the Naturalis Biodiversity Center.

The data matrix is composed of 143 terminals (Table 1), including 126 nrITS and 52 matK accessions, of which 66 were produced for this study. The remaining sequences were obtained from GenBank (from Pridgeon et al., 2001; Borba et al., 2002; Stenzel, 2004; Lahaye et al., 2008; Chiron et al., 2012; Karremans, 2014; Karremans and Rincón-González, 2015; and Rodrigues et al., 2015). The DNA sequences of Acianthera fornograndensis K. Lollmann & A. P. Fontana and Acianthera maculiglossa Chiron & N. Sanson were obtained from the plants that served as type material (Chiron et al., 2012). The specimens of Acianthera cabiriae Pupulin, G. A. Rojas & J. D. Zúñiga come from the type locality.

Fresh leaf and flower cuttings of approximately 1 cm² were dried with silica gel. Samples (20 mg) were pulverized and extraction performed following the DNEasy procedure (Qiagen). The nuclear ribosomal internal transcribed spacer (nrITS) region was amplified using the methods and primers for sequencing and amplification described by Sun et al. (1994) and the chloroplast gene matK was amplified and sequenced using the Kew matK primers 2.1aF and 5R. Sanger sequencing was done commercially by Macrogen on a 96-capillary 3730xl DNA Analyzer automated sequencer (Applied Biosystems, Inc.) using standard dye-terminator chemistry (Macrogen, Inc.).

The Staden et al. (2003) package was used for editing of the sequences. Contigs were exported as .fas files and opened in Mesquite v2.72 (Maddison and Maddison, 2007), where they were checked for base calling errors, each locus was aligned separately using MAFFT version 7.1 (Katoh and Standley, 2013). The ends of each data set were trimmed to eliminate possible erroneous data, and gaps were regarded as missing data. Arpophyllum giganteum Hartw. ex Lindl. was used as the outgroup, as it was found to be one of the most distantly related of all included species in this phylogenetic analysis (Pridgeon et al., 2001). The trees were produced with an analysis of the nrITS + matK dataset using BEAST v1.8.0. (Drummond et al., 2012). Parameters were set to preset, except for substitution model GTR with 10 categories for ITS and 8 categories for matK, clock models uncorrelated lognormal and exponential respectively, tree prior Yule process, and number of generations 30,000,000. The resulting trees were combined using TreeAnnotator v1.8.0., where the first 20% of the trees were used as burn-in. FigTree v1.3.1. (Rambaut, 2009) was used to edit the resulting tree. Posterior probabilities are given for each node in decimal form.

Table 1. List of the accessions used in the phylogenetic analysis. The vouchers, NCBI GenBank accession number, and source are given.

<table>
<thead>
<tr>
<th>TAXON</th>
<th>VOUCHER COLLECTOR AND NUMBER</th>
<th>ITS</th>
<th>matK</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acianthera aberrans (Luer) Pupulin & Bogarín</td>
<td>Pupulin 7839A; JBL-spirit</td>
<td>KY084267</td>
<td>KY218740</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera aberrans (Luer) Pupulin & Bogarín</td>
<td>Pupulin 7839B; JBL-spirit</td>
<td>KY084268</td>
<td>KY218741</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera aberrans (Luer) Pupulin & Bogarín</td>
<td>Pupulin 7839C; JBL-spirit</td>
<td>–</td>
<td>KY218742</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera adamantinensis (Brade) F.Barros</td>
<td>None</td>
<td>AF366936</td>
<td>–</td>
<td>Borba et al. 2002</td>
</tr>
<tr>
<td>Acianthera asaroides (Kraenzl.) Pridgeon & M.W.Chase</td>
<td>Chiron 11227</td>
<td>JQ306431</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera auriculata (Lindl.) Pridgeon & M.W.Chase</td>
<td>Chase 1456</td>
<td>AF262856</td>
<td>–</td>
<td>Pridgeon et al. 2001</td>
</tr>
<tr>
<td>Acianthera bragae (Ruschi) F.Barros</td>
<td>van den Berg 1990</td>
<td>JQ306362</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera breedlovei Soto Arenas, Solano & Salazar</td>
<td>Karremans 3962; JBL-spirit</td>
<td>KY084269</td>
<td>KY218743</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera brunescens (Schltr.) Karremans</td>
<td>Karremans 2746; JBL-spirit</td>
<td>KRR816549</td>
<td>KRR816558</td>
<td>Karremans and Rincón-González 2015</td>
</tr>
<tr>
<td>Acianthera brunescens (Schltr.) Karremans</td>
<td>Karremans 2460A; JBL-spirit</td>
<td>–</td>
<td>KY218744</td>
<td>This Study</td>
</tr>
<tr>
<td>Taxon</td>
<td>Voucher collector and number</td>
<td>ITS</td>
<td>matK</td>
<td>Source</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---------</td>
<td>-------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Acianthera brunnescens (Schltr.) Karremans</td>
<td>Karremans 2460B; JBL-spirit</td>
<td>–</td>
<td>KY218745</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera brunnescens (Schltr.) Karremans</td>
<td>Karremans 4511; JBL-digital</td>
<td>–</td>
<td>KY218746</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera brunnescens (Schltr.) Karremans</td>
<td>Karremans 4912; JBL-spirit</td>
<td>–</td>
<td>KY218747</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera brunnescens (Schltr.) Karremans</td>
<td>Karremans 5204; JBL-spirit</td>
<td>–</td>
<td>KY218748</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera butcheri (L.O.Williams) Pridgeon & M.W.Chase</td>
<td>Papulin 8127; no voucher</td>
<td>KY084270</td>
<td>KY218749</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera cabiriae Pupulin, G.A.Rojas & J.D.Zuñiga</td>
<td>Karremans 5439; JBL-digital</td>
<td>KY084271</td>
<td>KY218750</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera capillaris (Lindl.) Pridgeon & M.W.Chase</td>
<td>van den Berg 2081</td>
<td>JQ306424</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera circumplexa (Lindl.) Pridgeon & M.W.Chase</td>
<td>Karremans 3119; JBL-spirit</td>
<td>–</td>
<td>KY218752</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera cogniauxiana (Schltr.) Pridgeon & M.W.Chase</td>
<td>Karremans 6012; JBL-spirit</td>
<td>–</td>
<td>KY218753</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera costaricensis (Schltr.) Pupulin & Karremans</td>
<td>Karremans 5727; no voucher</td>
<td>KR816547</td>
<td>KR816556</td>
<td>Karremans and Rincón-González 2015</td>
</tr>
<tr>
<td>Acianthera crassiniformis (Ames & C.Schweinf.) Luer</td>
<td>Karremans 5870; no voucher</td>
<td>KY084273</td>
<td>KY218754</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera crepiniana (Cogn.) Chiron & Van den Berg</td>
<td>Rodrigues 502</td>
<td>KT599875</td>
<td>–</td>
<td>Rodrigues et al. 2015</td>
</tr>
<tr>
<td>Acianthera decipiens (Ams & C. Schweinf.) Pridgeon & M.W.Chase</td>
<td>Karremans 4032; JBL-spirit</td>
<td>KY084274</td>
<td>KY218755</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera fenestrata (Barb.Rodr.) Pridgeon & M.W.Chase</td>
<td>Chase 6798</td>
<td>AF262857</td>
<td>AF265468</td>
<td>Pridgeon et al. 2001</td>
</tr>
<tr>
<td>Acianthera foetens (Lindl.) Chiron & Van den Berg</td>
<td>van den Berg 2107</td>
<td>JQ306432</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera formagrandensis L.Kollmann & A.P.Fontana</td>
<td>Kollmann 7266</td>
<td>JQ306448</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera formagrandensis L.Kollmann & A.P.Fontana</td>
<td>van den Berg 2133</td>
<td>JQ306353</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera geminicaulina (Ams) Pridgeon & M.W.Chase</td>
<td>Karremans 5209A; JBL-spirit</td>
<td>KY084275</td>
<td>KY218756</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera geminicaulina (Ams) Pridgeon & M.W.Chase</td>
<td>Karremans 5209B; JBL-spirit</td>
<td>KY084276</td>
<td>KY218757</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera geminicaulina (Ams) Pridgeon & M.W.Chase</td>
<td>Karremans 3205; JBL-spirit</td>
<td>–</td>
<td>KY218758</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera glanduligera (Lindl.) Luer</td>
<td>Chiron 09511</td>
<td>JQ306369</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
</tbody>
</table>
Table 1 cont. List of the accessions used in the phylogenetic analysis.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher collector and number</th>
<th>ITS</th>
<th>matK</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acianthera gracilisepala (Brade) Luer</td>
<td>van den Berg 2077</td>
<td>JQ306404</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera hamata Pupulin & G.A.Rojas</td>
<td>v. Cramer 7114; JBL-spirit</td>
<td>KY084277</td>
<td>KY218759</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera hatschbachii (Schlr.) Chiron & Van den Berg</td>
<td>Karremans 4850; no voucher</td>
<td>KY084278</td>
<td>–</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera hatschbachii (Schlr.) Chiron & Van den Berg</td>
<td>van den Berg 2149</td>
<td>JQ306406</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera hatschbachii (Schlr.) Chiron & Van den Berg</td>
<td>Rodrigues 503</td>
<td>KT599876</td>
<td>–</td>
<td>Rodrigues et al. 2015</td>
</tr>
<tr>
<td>Acianthera heringeri (Hoehne) F.Barros</td>
<td>van den Berg 2045</td>
<td>JQ306363</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera hondurensis (Ames) Pridgeon & M.W.Chase</td>
<td>Karremans 6062; JBL-spirit</td>
<td>KY084279</td>
<td>KY218760</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera hondurensis (Ames) Pridgeon & M.W.Chase</td>
<td>Bogarin 9255; no voucher</td>
<td>KY084280</td>
<td>KY218761</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera hygrophila (Barb.Rodr.) Pridgeon & M.W.Chase</td>
<td>Karremans 4829; L-spirit</td>
<td>KY084281</td>
<td>–</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera hystricis (Kraenzl.) F.Barros</td>
<td>Rodrigues 507</td>
<td>KT599877</td>
<td>–</td>
<td>Rodrigues et al. 2015</td>
</tr>
<tr>
<td>Acianthera johannensis (Barb.Rodr.) Pridgeon & M.W.Chase</td>
<td>None</td>
<td>AF366939</td>
<td>–</td>
<td>Borba et al. 2002</td>
</tr>
<tr>
<td>Acianthera johnsonii (Ames) Pridgeon & M.W.Chase</td>
<td>Karremans 5720; JBL-spirit</td>
<td>KY084282</td>
<td>KY218762</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera jordanensis (Brade) F.Barros</td>
<td>van den Berg 2134</td>
<td>JQ306378</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera klotzschiana (Rchb.f.) Pridgeon & M.W.Chase</td>
<td>van den Berg 20993</td>
<td>JQ306445</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera lanceana (Lodd. ex Lindl.) Pridgeon & M.W.Chase</td>
<td>Karremans 5451; JBL-spirit</td>
<td>KY084283</td>
<td>KY218763</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera lanceana (Lodd. ex Lindl.) Pridgeon & M.W.Chase</td>
<td>Karremans 5451B; JBL-spirit</td>
<td>–</td>
<td>KY218764</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera lanceana (Lodd. ex Lindl.) Pridgeon & M.W.Chase</td>
<td>Karremans 5452; JBL-spirit</td>
<td>KY084284</td>
<td>KY218765</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera lepidota (L.O.Williams) Pridgeon & M.W.Chase</td>
<td>Karremans 5796; L-spirit</td>
<td>KY084285</td>
<td>KY218766</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera leptotifolia (Barb.Rodr.) Pridgeon & M.W.Chase</td>
<td>Chase 5622</td>
<td>AF262854</td>
<td>–</td>
<td>Pridgeon et al. 2001</td>
</tr>
<tr>
<td>Acianthera luteola (Lindl.) Pridgeon & M.W.Chase</td>
<td>Chase 10007</td>
<td>JQ306364</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera murex (Rchb.f.) Luer</td>
<td>Stenzel 483</td>
<td>KY081772</td>
<td>–</td>
<td>Stenzel 2004</td>
</tr>
<tr>
<td>Acianthera ochreata (Lindl.) Pridgeon & M.W.Chase</td>
<td>van den Berg 2115</td>
<td>JQ306354</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera ochreata (Lindl.) Pridgeon & M.W.Chase</td>
<td>van den Berg 2118</td>
<td>JQ306427</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
</tbody>
</table>
Table 1 cont. List of the accessions used in the phylogenetic analysis.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher collector and number</th>
<th>ITS</th>
<th>matK</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acianthera ochreata (Lindl.) Pridgeon & M.W.Chase</td>
<td>C293 AY</td>
<td>AF262858</td>
<td>AY008458</td>
<td>Pridgeon et al. 2001</td>
</tr>
<tr>
<td>Acianthera octophrys (Rchb.f.) Pridgeon & M.W.Chase</td>
<td>Rodrigues 521</td>
<td>KT599879</td>
<td>–</td>
<td>Rodrigues et al. 2015</td>
</tr>
<tr>
<td>Acianthera odontotepala (Rchb.f.) Luer</td>
<td>Stenzel 784</td>
<td>KY081773</td>
<td>–</td>
<td>Stenzel 2004</td>
</tr>
<tr>
<td>Acianthera pantasmi (Rchb.f.) Pridgeon & M.W. Chase</td>
<td>Karremans 4950; JBL-spirit</td>
<td>–</td>
<td>KY218767</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera pantasmi (Rchb.f.) Pridgeon & M.W. Chase</td>
<td>Karremans 4952; JBL-spirit</td>
<td>–</td>
<td>KY218768</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera papillosa (Lindl.) Pridgeon & M.W.Chase</td>
<td>Chiron 11038</td>
<td>JQ306501</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera pavimentata (Rchb.f.) Pridgeon & M.W.Chase</td>
<td>Chiron 09784</td>
<td>JQ306443</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera pavimentata (Rchb.f.) Pridgeon & M.W.Chase</td>
<td>van den Berg 2112</td>
<td>JQ306444</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera pectinata (Lindl.) Pridgeon & M.W.Chase</td>
<td>Chase 1296</td>
<td>AF262849</td>
<td>–</td>
<td>Pridgeon et al. 2001</td>
</tr>
<tr>
<td>Acianthera per-dusenii (Hoehne) F.Barros & L.R.S.Guim.</td>
<td>van den Berg 2082</td>
<td>JQ306454</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera pubescens (Lindl.) Pridgeon & M.W.Chase</td>
<td>Chiron 04848</td>
<td>JQ306365</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera pubescens (Lindl.) Pridgeon & M.W.Chase</td>
<td>van den Berg 2131</td>
<td>JQ306366</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera hystrix (Kraenzl.) F.Barros</td>
<td>APS.n.; no voucher</td>
<td>KC425836</td>
<td>–</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera ramosa (Barb.Rodr.) F.Barros</td>
<td>van den Berg 2120</td>
<td>JQ306438</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera recurva (Lindl.) Pridgeon & M.W.Chase</td>
<td>van den Berg 2145</td>
<td>JQ306375</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera rodriquesii (Cogn.) Pridgeon & M.W.Chase</td>
<td>Chiron 11044</td>
<td>JQ306446</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera rubroviridis (Lindl.) Pridgeon & M.W.Chase</td>
<td>Stenzel 893</td>
<td>KY081774</td>
<td>–</td>
<td>Stenzel 2004</td>
</tr>
<tr>
<td>Acianthera saundersiana (Rchb.f.) Pridgeon & M.W.Chase</td>
<td>van den Berg 2109</td>
<td>JQ306452</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera serpentula (Barb.Rodr.) F.Barros</td>
<td>Chiron 09029</td>
<td>JQ306370</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera serpentula (Barb.Rodr.) F.Barros</td>
<td>van den Berg 2135</td>
<td>JQ306411</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera sicaria (Lindl.) Pridgeon & M.W.Chase</td>
<td>Karremans 121; JBL-spirit</td>
<td>KY084286</td>
<td>KY218769</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera sicaria (Lindl.) Pridgeon & M.W.Chase</td>
<td>Bogarín 7727; JBL-spirit</td>
<td>–</td>
<td>KY218770</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera sicaria (Lindl.) Pridgeon & M.W.Chase</td>
<td>Karremans 4939; JBL-spirit</td>
<td>–</td>
<td>KY218771</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera sicaria (Lindl.) Pridgeon & M.W.Chase</td>
<td>Chase 5609</td>
<td>AF262848</td>
<td>–</td>
<td>Pridgeon et al. 2001</td>
</tr>
<tr>
<td>Acianthera sp.</td>
<td>Karremans 5432; JBL-spirit</td>
<td>KY084287</td>
<td>KY218772</td>
<td>This Study</td>
</tr>
<tr>
<td>Acianthera sonderiana (Rchb.f.) Pridgeon & M.W.Chase</td>
<td>van den Berg 2098</td>
<td>JQ306377</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera sonderiana (Rchb.f.) Pridgeon & M.W.Chase</td>
<td>van den Berg 2144</td>
<td>JQ306496</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera spilantha (Barb.Rodr.) Luer</td>
<td>van den Berg 2037</td>
<td>JQ306359</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera spilantha (Barb.Rodr.) Luer</td>
<td>van den Berg 2046</td>
<td>JQ306360</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera teres (Lindl.) Borba</td>
<td>None</td>
<td>AF366935</td>
<td>–</td>
<td>Borba et al. 2002</td>
</tr>
<tr>
<td>Acianthera teres (Lindl.) Borba</td>
<td>None</td>
<td>AF366937</td>
<td>–</td>
<td>Borba et al. 2002</td>
</tr>
<tr>
<td>Acianthera teres (Lindl.) Borba</td>
<td>Karremans 4849; no voucher</td>
<td>KY084288</td>
<td>–</td>
<td>This Study</td>
</tr>
</tbody>
</table>
Table 1 cont. List of the accessions used in the phylogenetic analysis.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher collector and number</th>
<th>ITS</th>
<th>matK</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acianthera testifolia (Sw.) Solano</td>
<td>Karremans 4914; JBL-spirit</td>
<td>KR816551</td>
<td>KR816560</td>
<td>Karremans and Rincón-González 2015</td>
</tr>
<tr>
<td>Acianthera testifolia (Sw.) Solano</td>
<td>Stenzel 656</td>
<td>KR816552</td>
<td>–</td>
<td>Stenzel 2004</td>
</tr>
<tr>
<td>Acianthera translucida (Barb.Rodr.) Luer</td>
<td>van den Berg 2092</td>
<td>JQ306368</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera tricarinata (Poepp. & Endl.) Pridgeon & M.W.Chase</td>
<td>Chiron 07792</td>
<td>JQ306495</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera translucida (Barb.Rodr.) Luer</td>
<td>van den Berg 2092</td>
<td>JQ306368</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera translucida (Barb.Rodr.) Luer</td>
<td>van den Berg 2092</td>
<td>JQ306368</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera translucida (Barb.Rodr.) Luer</td>
<td>van den Berg 2092</td>
<td>JQ306368</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Acianthera translucida (Barb.Rodr.) Luer</td>
<td>van den Berg 2092</td>
<td>JQ306368</td>
<td>–</td>
<td>Chiron et al. 2012</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The resulting “target” tree of the Bayesian analysis of the combined nrITS and matK matrices have been used to establish the clades (Fig. 1). Support measures are given as P.P. (Posterior Probabilities). The Acianthera affinity forms a well-supported clade (P.P.=1) that is here divided into four subclades.

Clade Brenesia (P.P.=1) includes the accessions of Acianthera murex, and Antilla erosa, A. parvula, A. prostrata, and A. trichophora (type species of Antilla).

Clade Acanthera (P.P.=1) contains all the remaining species of Acianthera, including Acianthera aberrans (type species of Aberrantia), A. atropurpurea (type species of Pleurobotryum), A. auriculata (type species of Arthrosia), A. braga (type species of Sarracellina), A. butcheri (type species of Didacyclus), A. fenestrata (type species of Cryptophoranthus), A. lepidota (type species of Unguella), A. recurva (type species of Acianthera), and A. testifolia (type species of Apoda-prorepetia).
FIGURE 1. Phylogenetic relationship amongst the species of *Acianthera* based on a combined nrITS + *matK* dataset, using BEAST v1.8.0. Node values are posterior probabilities. Branches transformed to be of equal length. The four subgenera proposed here are labeled. The nodes or branches including an accession of the type species of generic names are labeled accordingly.
DISCUSSION

Our nrITS+matK combined analysis of a broad set of Acianthera species complements and expands the analyses of Pridgeon et al. (2001) and Chiron et al. (2012). The placement in Acianthera of the genera Arthrosia, Brenesia, Cryptophoranthus, Pleurothallidium and Sarracenia, as previously proposed (Pridgeon and Chase, 2001; Pridgeon, 2005; Chiron and van den Berg, 2012), is confirmed. In addition, the analysis of the type species of Aberrantia, Antilla, Apoda-prorepetentia, Didactylus and Unguella, and of two representative species of Kraenzlinella, shows that these genera are also imbedded within a broad circumscription of Acianthera. No DNA data of the monotypic Dondodia, Ogygia, and Proctoria were available for this study, but the three genera are included within Acianthera on the basis of their morphological similarity.

Aberrantia was proposed by Luer (2005) to accommodate a single species previously placed by the author in Pleurothallis subgen. Aberrantia Luer (2004). It was not included in Acianthera because of a “floral structure that is incompatible,” namely the bicallose, truncate petals ending into a short apiculum and long claw of the lip. However, other morphological features, especially the leaf with margins decurrent on the ramicaul, the short inflorescence, borne above the base of the leaf and the glabrous, gapping flowers, are common to several other Acianthera species (Bogarin et al., 2008). The accessions of A. aberrans were here retrieved embedded within Acianthera in a clade containing mainly species found from Costa Rica to Ecuador.

Antilla was proposed by Luer (2004) to accommodate a dozen species with pendulous plants and leaves with dentate margins, endemic to the Greater Antilles, which he noted were related to Acianthera (Luer, 2000). The species of Antilla have mostly been considered as members of Pleurothallis (Luer, 1986, 2000; Pridgeon, 2005). Here species of Antilla are found in a highly supported clade. We give subgeneric status to this clade to distinguish it from the members of Kraenzlinella to which it is closely related, but that have quite different morphologies and distribution.

Apoda-prorepetentia was proposed by Luer (2004) to segregate about ten species, with highest diversity in the Ecuadorian and Colombian Andes, previously assigned to Pleurothallis subgen. Apoda-prorepetentia Luer (1986). Luer (2007) characterized the group by the repent, often pendent habit, with broad, short-stemmed, overlapping leaves, single-flowered (sometimes successive) inflorescences, fleshy sepals often pubescent externally, never spreading, commonly connate, single-veined and spatulate petals and an apically denticulate to fringed lip with a pair of lateral lobes. Stenzel (2004) and Karremans and Rincón-González (2015) found A. testifolia, type species of Apoda-prorepetentia, embedded within Acianthera, as suggested by Solano-Gómez et al. (2011). Here the accessions of two species assigned to this genus are found in a highly supported clade including several other species with mainly pendent habits and mostly found from Costa Rica down to Ecuador.

Arthrosia was proposed by Luer (2006) to accommodate 14 species previously assigned to Pleurothallis subgen. Arthrosia Luer (Luer, 1986). The species assigned to this

Brenesia was proposed to recognize the distinctness of a species with Pleurothallidinae-like flowers but with the inflorescence arising from a basal node of the stem rather than the apex of the ramicaul. Luer (2004) transferred the species of Echinosepala Pridgeon & M.W. Chase, some of which also have rhizomatous inflorescences, to Brenesia in the believe that they were related to each other. However, such a relationship has been disproven by DNA data (Pridgeon et al., 2001; Pupulin and Karremans, in prep.). The clade that includes the type species of Brenesia is found sister (with low support) to a clade that includes Antilla and Kraenzlinella, altogether highly supported as sisters to the rest of Acianthera. Four species of Central American distribution are recognized in this clade, which is here given subgeneric status.

Cryptophoranthus was proposed to recognize a group of species distinguished by the connotation of the dorsal sepal with the synsepal at the base and apex, forming a pair of lateral “windows.” It is now known that flowers with diversely connate sepals occur in several different affinities within Pleurothallidinae (Karremans, 2016), and the species once included in Cryptophoranthus belong to several unrelated genera (Luer, 1986). The type species, however, was found embedded within Acianthera. Six Brazilian endemic species characterized, aside from the lateral “windows,” by the short ramicauls and 1–2 flowered inflorescences were given section status by Chiron and van den Berg (2012).

Didactylus was proposed by Luer (2005) to accommodate four species previously placed by the author in Pleurothallis subgen. Didactylus Luer (2004). They were not included within Acianthera in essence because of the presence of “two narrow, curved, lateral lobes on the rostellum.” The species of Didactylus are otherwise indistinguishable from other Acianthera. The accession of A. butcheri, type species of Didactylus, is found in a clade including several other species with pendent habits, distributed mostly ranging from Costa Rica to Ecuador.

Dondodia Luer was proposed to segregate Acianthera cymbiformis (Dod) Pridgeon & M.W.Chase, an unusual species known only from Hispaniola. It had been previously placed in Pleurothallis sect. Cryptophoranthae Luer (1986) on account of the connotation of the dorsal sepal with the lateral synsepal. The species of that section would later be found embedded within Acianthera (Pridgeon et al., 2001) and transferred to the genus (Pridgeon and Chase, 2001), transferring this species too. Karremans (2016) suggested that A. cymbiformis is related to the also Antillian species placed in the genera Antilla and Proctoria, rather than to the Brazilian members of Acianthera sect. Cryptophoranthae. No DNA data of the species were available for this study but the thickly coriaceous leaf with erose margins, infundibuliform floral bract, the sepals externally papillose,
the dorsal sepal connate apically to the lateral sepals, lanceolate petals, thick, verrucose lip, with a rounded margin and a basal claw, and the clavate column with a denticulate apex are reminiscent of several other Antillean Acianthera species.

Kraenzlinella was proposed more than a century ago but received little recognition as a distinct genus (Luer, 1986; Luer, 1994) until it was re-circumscribed by Pridgeon and Chase (2001). The single sequence of *Kraenzlinella* analyzed by Pridgeon et al. (2001) was retrieved in a clade together with the genera *Brachionidium* and *Myoxanthus* rather than *Acianthera*. That same sequence is here found embedded with high support within *Acianthera*, alongside other sequences of *Kraenzlinella*. It is likely that the relatively long branches of the accessions of both *Kraenzlinella* and *Brachionidium* had initially misplaced the two genera in Pridgeon et al. (2001), as neither is related to *Myoxanthus* (Karremans, 2016). Here *Kraenzlinella* is given subgeneric status to distinguish its nine species with stout erect habits distributed from Mexico through Central America southwards into Bolivia, from the members of *Antilla* to which they are closely related.

Ogygia was proposed by Luer (2006) to accommodate a single species endemic to the Revillagigedo Archipelago in Mexico, and of which the only available specimens, at the time of proposal, were sterile. Solano-Gómez (2003) transferred the species to *Acianthera* after studying fertile material of *A. unguicallosa* from the type locality. Even though no DNA data was available for this study the author’s illustration shows a species that is indeed morphologically similar to other *Acianthera* species from Mexico.

Pleurobotryum was proposed by Barbosa Rodrigues (1877) to accommodate a species distinguished among the Pleurothallidinae by the conspicuously long articulate, motile lip and the unusual cylindrical leaves. *Pleurobotryum* was later redefined and expanded by Hoehne (1936) adding a handful of species to it, but the genus has been mostly considered a synonym of *Pleurothallis* recognizing that besides the unusual sepaline tube, the two species could be otherwise placed among the latter. Pridgeon et al. (2001) found the two species of Sarracenella well embedded within *Acianthera*. *Acianthera sect. Sarracenella* (Luer) Chiron & van den Berg (2012) was created to accommodate these two species.

Unguella was proposed by Luer (2004) to accommodate two species previously placed by the author in *Pleurothallis* subgen. *Unguella* Luer (2004). They were not included within *Acianthera* because of the presence of “a narrow claw of a three-lobed lip that articulates with a narrow extension of the column-foot.” The species of Unguella are otherwise indistinguishable from other *Acianthera*. The accession of *A. lepidota*, type species of *Unguella*, is found in a clade together with the type of *Didactylus*, and other species with pendent habits from Costa Rica, Panama, Colombia and Ecuador.

Acceptance of the splinter generic concepts within *Acianthera* subgen. *Acianthera* would require their complete recircumscription and/or the establishment of additional segregate generic concepts, which we believe to be unnecessary. *Antilla*, *Brenesia* and *Kraenzlinella* are given subgeneric status in recognition of their unique morphologies and distribution, supported by genetic distance, as has been previously done with *Specklinia* Lindl. (Karremans et al., 2016). Their overall similarity to other species of *Acianthera* prevents us from recognizing them as distinct genera. The 14 validly published generic concepts that are here placed within the *Acianthera* affinity are regarded as synonyms of the latter. As such, the genus, just shy of 300 species, is manageable in size, well-defined and morphologically diagnosable (Fig. 2, 3).

Taxonomic Treatment

FIGURE 2. Species of Acianthera, including the type species of the genera Aberrantia (A), Brenesia (H), Didactylus (E) and Sarracenella (B), and representative species of Acianthera subgen. Antilla (K) and Acianthera subgen. Kraenzlinella (J). Photographs by F. Pupulin (A, E, F, J), M. Díaz (D, I, L), W. Driessen (B, K), A.P. Karremans (C, H) and D. Bogarín (G). Vouchers for A, C, D, E, I and L at JBL (spirit).

Out of the 299 species currently accepted in Acianthera, 268 belong to Acianthera subgen. Acianthera. It is premature at this time to present a full list of species belonging to this subgenus (as is done hereafter for the three remaining subgenera), and a thorough revision of Acianthera subgen. Acianthera is left for a future study. Most species have been revised in previous studies (Luer, 2004; Chiron and van den Berg, 2012; Rodrigues et al., 2015; Solano-Gómez, 2015), but there are still some obscure names that require attention. Species belonging to this subgenus are variable morphologically, but can be recognized in general terms by the stout habit, a more or less bilobed ramicaul with a depression along the middle, a sessile leaf, fleshy flowers, commonly pubescent to verrucose, lateral sepals fused into a concave synsepal, petals lanceolate, denticulate, the lip thick, oblong, bicalcar, with lateral lobes below the middle, and a pair of auricles at the base. Acianthera species are distributed from Mexico to Argentina and Uruguay, through Central America and the Antilles, and the genus is notably species-rich in Brazil.

Formal sectional status has been assigned to several groups of species belonging to subgen. Acianthera (Lindley, 1859; Barbosa Rodrigues, 1882; Luer, 1986; Chiron and van den Berg, 2012), and a few subsections were also proposed (Chiron and van den Berg, 2012). Our genetic analyses do not include enough samples in some of the groups to test their consistence on a broader geographical scale, and our inclusions of the sectional groups into the synonymy of subgen. Acianthera is aimed at providing a general frame of the subgenus' taxonomy and of those names that actually refer to the same taxa.

Acianthera caymanensis (C.D.Adams) Karremans, comb. nov.

Acianthera denticulata (Cogn.) Karremans, comb. nov.

Acianthera laxa (Sw.) A.Douchette, Phytotaxa 275(3): 270. 2016.

Acianthera pendens (Dod) A.Douchette, Phytotaxa 275(3): 270. 2016.
Basionym: Pleurothallis pendens Dod, Moscosoa 1(2): 49. 1877.

Eighteen species belong to Acianthera subgen. Antilla. They can be recognized by the ramicaul shorter to about as long as the, elliptical and sessile, leaf. The leaves are notably coriaceous, sometimes verruculose on the adaxial surface and frequently with denticulate or erose margins. The inflorescence is a loose, frequently flexuous and pendulous, raceme emerging from the spathe at the base of the leaf. The ovary of most species is notoriously spicate-verrucose. Dorsal sepal almost completely free, ovate, acute, lateral sepals connate, concave, bifid at the apex. The petals are narrow, entire to microscopically serrate, acute. The lip in most species is conspicuously unguiculate, the blade is bicallos, with a pair of lateral lobes near the middle and minutely auriculate at the base, with the apex obtuse. The column is elongate, clavate, broadly winged close to the apex, conspicuously fimbriate-dentate at the apex. The species of Antilla are endemic to the Antilles, where they are restricted to the Cayman Islands, Cuba, Hispaniola, Jamaica and Puerto Rico (Luer 2014).

3. Acianthera subgen. Brenesia (Schltr.) Karremans, comb. nov.

Acianthera costaricensis (Schltr.) Pupulin & Karremans, comb. nov.
This species has traditionally been considered a synonym of A. johnsonii, however, it is morphologically quite different. Acianthera costaricensis has larger plants that mostly produce basal inflorescences (vs. mostly apical), has yellow sepals that are conspicuously long hirsute (vs. reddish-cream and shortly puberulent), and has lanceolate petals (vs. oblong). Photographs of both are shown in the figures.

Acianthera herrerae (Luer) Solano & Soto Arenas, Icon. Orchid. 5-6: x. 2002 [2003].

Species of Acianthera subgen. Brenesia can be recognized by the large fleshy plants, and especially by the multiflowered inflorescence that can be produced both on the apex and the lowermost nodes of the ramicaul. The flowers do not spread widely, are fleshy and hirsute-papillose externally. The four species of this subgenus are only found from Mexico to Panama (Bogarín et al., 2014; Solano-Gómez, 2015).

Additional Transfers to Acianthera

Pleurothallis albiflora has traditionally been placed under the synonym of Acianthera hygrophila (Barb.Rodr.) Pridgeon & M.W.Chase. From Barbosa Rodrigues’ original drawings and descriptions it can be distinguished from the latter by the wider and longer leaves, the much shorter and congested inflorescences, the more compact flowers, the sub-trapezoid petals and the differently shaped lip, with a much larger difference between the width below the middle and below the apex, and a recurved apex. The flowers are said to be fully white, and not dirty-white with carmine markings.

The type specimen of this species clearly shows the plant morphology of a species of Acianthera as defined here.

Nine species belong to Acianthera subgen. Kraenzlinella. They can be recognized by the short, stout ramicaul and a longer, fleshy, sessile leaf, a racemose inflorescence with successive flowers, and the ovaries variously ornamented. The flowers are fleshy and have more or less free, carinate sepals. The petals are more or less auriculate at the base, the unguiculate lip with a biauriculate claw. The column is slender, winged, the clinandirum hooded. They are distributed from Mexico through Central America into Bolivia (Luer, 1994).

Pleurothallis brunnescens originally described from San Ramón, Costa Rica has long been considered a synonym of Acianthera lojae (Schltr.) Luer, based on a type from Loja, Ecuador. The two localities have little flora in common, and even though the floral details might be somewhat similar the two have quite dissimilar plant morphology. As it is hard to believe that they represent the same species, a combination for P. brunnescens in Acianthera is required.

Luer placed this species in genus Unguella which is here considered a synonym of Acianthera.

This species is most probably closely related to Acianthera punctatiflora and A. minima, it would have priority over any of the two.

Luer (2005) placed this species in genus Didactylus which is here considered a synonym of Acianthera.
Acianthera purpurascens (Luer & Hirtz) Karremans, *comb. nov.*

Acianthera scabripes (Lindl.) Karremans, *comb. nov.*

We agree with Luer (1992) that this is not a *Myoxanthus* species on account of the few flowers born from a spathe.

ADDITIONAL PROPOSED TRANSFERS

Anathallis anfracta (Luer) Karremans, *comb. nov.*

This unusual species was placed in *Kraenzlinella* by Luer (1994). The DNA evidence presented here shows that it actually belongs in genus *Anathallis* Barb.Rodr. It is most likely closely related to *Anathallis smaragdina* (Luer) Pridgeon & M.W.Chase.

LITERATURE CITED

Barbosa Rodrigues, J. 1877. Genera et Species Orchidearum Novarum I. Sebastianopolis, Brazil.

Luer (2005) placed this species in genus *Didactylus* which is here considered a synonym of *Acianthera*.
PRIDGEON, P. J. CRIBB, M. W. CHASE AND F. N. RASMUSSEN, EDS.
Genera Orchidacearum, 4. Epidendroideae (Part One). Oxford
University Press, Oxford.
—– AND M. W. CHASE. 2001. A phylogenetic reclassification of
Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences.
of Acianthera (Orchidaceae: Pleurothallidinae) from Costa Rica.
RAMBAUT, A. 2009. FigTree v1.3.1. http://tree.bio.ed.ac.uk/
software/
taxonômica de Acianthera sect. Pleurobotryae (Orchidaceae,
SOLANO-GÓMEZ, R. 2003. Acianthera unguicallosa (L.O.Williams)
Solano. Plate 512 in E. HÁGSATER AND M. A. SOTO, EDS. Orchids
of Mexico, parts 2 and 3. Icones Orchidacearum 5–6. Instituto
Chinoin, A. C., Mexico D. F.
—–. 2015. A taxonomic synopsis of the Mexican species of
Acianthera (Orchidaceae: Pleurothallidinae) including a new
——, G. A. SALAZAR, AND R. JIMÉNEZ. 2011. New combinations in
sequences using the Staden Package and EMBOSS. Pages 393–
410 in S. A. KRAWETZ AND D. D. WOMBLE, EDS. Introduction to
Bioinformatics. A Theoretical and Practical Approach. Human
Press Inc., New Jersey.
Pleurothallis R. Br. (Orchidaceae) in the Greater Antilles.
Dissertation thesis. Mathematisch–Naturwissenschaftlichen
Fakultät I der Humboldt–Universität zu Berlin.
in W. GREUTER AND R. RANKIN RODRÍGUEZ, EDS. Flora de la
Phylogenetic analysis of Sorghum and related taxa using
internal transcribed spacers of nuclear ribosomal DNA. Theor.
Appl. Genet. 89: 26–32
Page 188 intentionally left blank.
A NEW SPECIES OF CALYPTRANTHES (MYRTACEAE) FROM PERU

MARIA LÚCIA KAWASAKI¹,² AND DANIEL SANTAMARÍA-AGUILAR²,³

Abstract. A new species of Myrtaceae from lowland forests of Peru is described and illustrated. *Calyptranthes mcvaughii* is characterized by the subsessile, ovate to lanceolate leaves, obtuse to subcordate at base and by the spiciform panicles.

Resumen. Se describe y se ilustra una especie nueva de Myrtaceae proveniente de bosques húmedos de las tierras bajas del Perú. *Calyptranthes mcvaughii* se caracteriza por las hojas subsésiles, ovadas a lanceoladas, obtusas a subcordadas en la base y por las paniculas espiciformes.

Keywords: *Calyptranthes*, Myrtaceae, Peru

Calyptranthes Sw. is a genus of Myrtaceae traditionally included in the subtribe Myrciinae O. Berg (Berg, 1855); probably more than 200 species occur in the tropical and subtropical regions of America, from southeastern United States (Florida) to Mexico, Central and South America, and the Caribbean. The species of *Calyptranthes* are trees or shrubs usually characterized by: stems branching predominantly bifurcate, the branchlets often biseriate to 2-winged; flowers in paired panicles, the calyx closed in bud, calyptriform and circumscissile, the calyptra deciduous; petals absent or inconspicuous; ovary 2-locular, with two ovules per locule; fruits globose to oblate, dark purple when mature, crowned by a circular scar; seeds 1 or 2; embryo myrcioid, with cotyledons leafy and folded, the radicle well developed, equaling cotyledons in length.

Calyptranthes is represented in Peru by ca. 20 to 25 species (McVaugh, 1958; Holst, 1993; Tropicos 2016). In this contribution, a new species of *Calyptranthes* from lowland forests of Tocache, San Martin, is described and illustrated.

Calyptranthes mcvaughii M. L. Kawas. & D. Santam., sp. nov. TYPE: PERU. San Martín: Tocache Province, Tocache District (Mariscal Cáceres, Tocache Nuevo on label), trail to Santa Rosa, right margin of Río Mishollo, 350–370 m, 5 August 1973 (fl), J. Schunke Vigo 6706 (Holotype: MICH; Isotypes: F, MO), Fig. 1.

Differ from other species of *Calyptranthes* by the combination of the following characters: subsessile, ovate to lanceolate leaves, obtuse to subcordate at base and flowers in spiciform panicles.

Shrubs 1.5–5 m high, the trichomes on leaves, inflorescences and flowers dichasiate, yellowish to yellowish-brown; branchlets terete to compressed in cross section. Leaf blades subsessile, ovate to lanceolate, subcoriaceous, (14–) 16–24.5 × (6–) 7–9 cm, the upper surface glabrous, drying olive-green, the lower surface puberulous, yellowish-green; glands punctiform, indistinct on both surfaces or impressed above; midvein impressed above, convex below; lateral veins 13–17 pairs, slightly impressed above, salient below; marginal veins 2, the innermost arched, 5–10 mm from blade margin, similar to the lateral veins in prominence; apex abruptly acuminate, the acumen to ca. 5 mm long; base obtuse to subcordate; petioles to 5 mm long, channeled, glabrous, dark. Inflorescences subterminal, of paired spiciform, narrow panicles, 13–17 cm long, puberulous, the lower branches to 2 cm long; bracts and bracteoles not seen, early deciduous. Flower buds closed, obovoid, 3–4 mm long, gland-dotted, sessile; hypanthium prolonged ca. 2 mm beyond the ovary, appressed-pubescent to puberulous, somewhat furfuraceous at the base; calyx calyptriform, obtuse to minutely apiculate, puberulous to glabrous, deciduous; petals not seen; disk ca. 2 mm diam., glabrous; stamens numerous, the filaments ca. 5–7 mm long, the anthers ca. 0.5 mm long; style ca. 1 cm long, the stigma punctiform; ovary 2-locular, with 2 ovules per locule. Fruit (immature, only one seen) globose, reddish, crowned by a circular scar, ca. 8 mm diam., glabrous, gland-dotted; seed coat membranous; embryo myrcioid, the cotyledons leafy and folded, the radicle elongate, equaling the cotyledons in length.

Calyptranthes mcvaughii is characterized by the subsessile (petioles to 5 mm long), ovate to lanceolate leaves, 14–24.5 cm long, that are obtuse to subcordate at base and by the spiciform panicles. Among the Peruvian species, *Calyptranthes* mcvaughii could be misidentified as *C. sessilis* McVaugh or *C. plicata* McVaugh. In these two species, however, the leaves are sessile and cordate at base; in *C. sessilis*, the leaves are ovate, usually smaller (to 19 cm long), and the flower buds are fusiform and larger, 6–7 mm long (vs. obovoid, 3–4 mm long); in *C. plicata*, the leaves are obovate to oblanceolate, larger (30–55 cm long), with 20–25 (vs. 13–17) pairs of lateral veins, and...
Figure 1. Calyptranthes mcvaughii M. L. Kawas, & D. Santam. Photograph of the holotype, Schunke Vigo 6706 (MICH). Inset, flower after anthesis with calyptra attached, from isotype at F.
the inflorescences are shorter (to 7 cm long vs. 13–17 cm long), on leafless nodes (vs. subterminal). *Calyptranthes brevissipicata* McVaugh, a species from Peru and Ecuador, is similar to *C. mcvaughii* in the spiciform panicles, but it differs in the petiolate (petioles 5–10 mm long), narrowly elliptic to elliptic leaves, obtuse to cuneate at base.

Eponymy: Named in memory of Dr. Rogers McVaugh (1909–2009), who first recognized this species as new (annotated on specimens at F, MICH, and MO). Dr. McVaugh’s outstanding work on Myrtaceae established the contemporary basis for taxonomic studies on the family in the Neotropics.

Additional Specimens Examined: PERU. San Martín: Tocache Prov., Tocache Distr. (Mariscal Cáceres, Tocache Nuevo on label), Tananta, left margin of Río Huallaga, 5 October 1970 (fl), *J. Schunke Vigo 4474* (F, US); Río Cañuto, “Curarelandia,” property of José Schunke Vigo, near km 23 along road from Tocache Nuevo to Puerto Pizana, ca. 8°06’S, 76°36’W, 475 m, 19 December 1981 (fr), *T. Plowman & J. Schunke Vigo 11507* (F).

Distribution and habitat: In lowland forests (350–475 m) in the region of Tocache, San Martín.

Phenology: Collected with flowers in August and October and with fruits in December.

Conservation Status: Known only from three collections made 35 to 45 years ago in the same region; it is evaluated as Vulnerable [VU: B2ab(iii)] according to the IUCN Red List (IUCN, 2001).

LITERATURE CITED

Page 192 intentionally left blank.
ICONES STELIDARUM (ORCHIDACEAE) COLOMBIAE II

CARLYLE A. LUER

Abstract. An additional fifty new species of Stelis from Colombia are described and illustrated in this the second of a series, of fifty species at a time, that includes those not identified when compared with any of the previously known species.

Keywords: Colombia, Orchidaceae, Pleurothallidinae, Stelis

While continuing to revise the genus Stelis Sw. for Colombia, an additional 50 new species are described and illustrated.

All species of the genus Stelis Sw. are distinguished by a short column that is closely surrounded by the petals and the lip into a compact unit, referred to herein as the “central apparatus.” The column bears two stigmas, sometimes confluent, and the anther with two pollinia; two short petals flank the column; and the lip below is closely associated with the undersurface of the column.

When describing species based on collections not gathered by the author, I add my illustration number to the protologue.

Stelis aggregata Luer & R. Escobar, sp. nov. TYPE: COLOMBIA. Chocó: Urrao, south of the pass between Urrao and Carmen de Atrato, 2700 m, 20 May 1995, C. Luer, J. Luer, R. Escobar et al. 17632 (Holotype: SEL). Fig. 2-3.

This medium-sized, caespitose species is characterized by numerous, simultaneous, many-flowered inflorescences about as long as an elliptical leaf; a five-veined dorsal sepal; three-veined petals; and an obtuse lip with the dorsum descending 45°.

Plant medium in size, epiphytic, densely caespitose. Ramicauls erect, slender, 13–15 cm long, with a close, tubular sheath near the middle, another 2 sheaths below and at the base. Leaf erect, coriaceous, elliptical, acute, 9–10 cm long, with an ill-defined petiole, 2 cm wide in the dry state, cuneate below to the base. Inflorescence 3–12, 5–12 cm long, the racemes erect, strict, sub congested, distichous, many-flowered; floral bracts oblique, acute, 3.5 mm long; pedicels 2.5 mm long; ovary 1.5 mm long; the peduncle ca. 2 cm long, subtended by a fagacious spathe, from a node at the apex of the ramicaul; flowers rose-colored; petals glabrous, expanded, ovate, connate below the middle, the dorsal sepal erect, 4 mm long, 3 mm wide, 5-veined, the lateral sepals oblique, 2.5 mm long, 3 mm wide, 4-veined; petals transversely semilunate, 1 mm long, 1.75 mm wide, 3-veined, concave, the apex broadly rounded, thickened, with a transverse carina; lip ovoid-triangular, 1 mm long, 1 mm wide, 0.5 mm deep, slightly concave below a thick bar without a glenion, the apex rounded with margin thick, the dorsum smooth, acutely descending to the base, the base connate to the base of the column; column stout, ca. 1 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Latin aggregatus, “clustered,” referring to the fascicle of racemes.

This medium-sized, caespitose species is remarkable for the large number of simultaneous racemes about as long as the leaf. The dorsal sepal is five-veined and the petals are three-veined. The dorsum of the obtuse lip descends 45°.

Stelis ambrosia Luer & R. Escobar, sp. nov. TYPE: COLOMBIA. Putumayo: between La Cocha and Sibundoy, 2700 m, 30 July 1978, C. Luer, J. Luer, R. Escobar et al. 3071 (Holotype: SEL). Fig. 2-3.

This medium to large species is distinguished by a repent rhizome of various lengths, and a long, successively flowered raceme that far exceeds the leaf; an elliptical, three-veined dorsal sepal; lateral sepals connate into a deeply concave synsepal; semilunate, three-veined petals; and a subquadrate lip with an acute apex and a glenion.

Plant medium to large, epiphytic, short- to long-repent, scandent, the rhizome slender, 1–7 cm long between ramicauls; roots slender. Ramicauls ascending, erect, 3–5 cm long, with a tubular sheath from near the middle and another 1–2 sheaths below and at the base. Leaf erect, coriaceous, elliptical, subacute, 4.5–7.5 cm long including a petiole 0.5–1 cm long, the blade 1–2.5 cm wide in the dry state. Inflorescence single; 8–14 cm long, the raceme erect, strict, congested. more or less second, successively flowered, with many flowers open simultaneously; floral bracts oblique, acute, 2–2.5 mm long; pedicels 1 mm long; ovary 1 mm long; peduncle 2–3 cm long, from a node at the apex of the ramicaul; sepals glabrous, the dorsal sepal erect, elliptical, obtuse to round at the tip, 4–5 mm long, 3 mm wide, 3-veined, connate ca. 1 mm, the lateral sepals redbrown or yellow, oblique, connate to the tip into a deeply concave synsepal, 2 mm long, 4.5 mm wide; petals orange or purple, transversely semilunate, concave, the apex rounded, 0.6 mm long, 0.8–1 mm wide, 3-veined, with a transverse callus; lip orange or purple, subquadrate, 0.5 mm long, 0.8 mm wide, 0.5 mm deep, concave below a bar cleft with a glenion, the apex broadly obtuse with an acute, triangular apiculum, the dorsum convex with an low, ill-defined callus, the base truncate, hinged to the base of the column; column clavate, ca. 1 mm wide and long, the anther and the bilobed stigma apical.

The author is grateful to the staff of MO and SEL for making their specimens available for study, to S. Dalström for inking the figures presented herein, all based on pencil drawings by the author, and to the generosity of the Pleurothallid Alliance for making the inking possible.

1 Part one of this series was published in Luer (2016).

2 3222 Old Oak Drive, Sarasota, Florida 34239–5019, U.S.A.; cluer@juno.com

© President and Fellows of Harvard College, 2016
ISSN: 1938-2944, DOI: 10.3100/hpib.v21iss2.2016.n6, Published online: 31 December 2016
Stelis arrecta Luer & R. Escobar, sp. nov. TYPE: COLOMBIA. Cundinamarca: between Une and Gutierrez, south of Bogotá, 2200 m, 19 May 1984. C. Luer, J. Luer & R. Escobar 10362 (Holotype: MO). Fig. 4.

This species is repent, the lengths of the rhizome apparently influenced by local conditions, but details of the inflorescence remain the same. Flowers are produced slowly in a long raceme. Capsules are appearing low in the inflorescence, while many flowers persist above. The dorsal sepal is three-veined and elliptical with a rounded apex; the petals are three-veined; and the lip is short, broader than long, with an acute, triangular tip, and a deep glenion.

Stelis bracteolenta Luer & R. Escobar, sp. nov. TYPE: COLOMBIA. Cundinamarca; above Gutiérrez S of Bogotá, 2700 m, 19 May 1984. C. Luer, J. Luer & R. Escobar 10369 (Holotype: SEL). Fig. 5.

This medium-sized, caespitose species is distinguished by a loosely multiflowered raceme that exceeds the leaf; conspicuous, floral bracts with dilated, more or less recurved margins; multiveined sepals with the lateral sepals connate into a concave synsepal; thick, three-veined petals; and an ovoid, obtuse lip concave below a bar.

Plant medium in size, epiphytic, caespitose; roots slender. Ramicauls erect, slender, 4–5 cm long, enclosed by a tubular sheath from below the middle and another 1–2 sheaths below and at the base. Leaf erect, coriaceous, elliptical, subacute, 6–7 cm long including a petiole ca. 1 cm long, the blade 1–1.5 cm wide in dry state, cuneate below into the petiole. Inflorescence single; 12–15 cm long, the raceme erect, second, crowded, simultaneously many-flowered, floral bracts tubular, subacute, 3–4 mm long; pedicels 2 mm long; ovary 2 mm long; peduncle ca. 2 cm long, with a spathe ca. 8 mm long, from a node below the apex of the ramicaul; flowers dark purple; sepals microscopically ciliate-pubescent, the dorsal sepal erect, ovate, obtuse, 10 mm long, 7 mm wide, 5-veined, with accessory veins to incompletely 7-veined; petals transversely elliptical, 1.5 mm long, 2 mm wide, the apical margin thick, 3-veined below a transverse carina; lip ovoid, 1.6 mm long, 1.6 mm wide, 1.2 mm deep, concave below a shallowly cleft bar, the apex obtuse with the margin thickened, the dorsal with 3 low, rounded calli, the base truncate, hinged to the base of the column; column stout, ca. 1.8 mm long and wide, the anther and bilobed stigma apical, the foot obsolescent.

Etymology: From the Latin bracteolentus, “well developed bracts” referring to the appearance of the floral bracts.

This medium-sized, caespitose species is distinguished by a loosely flowered raceme with rather large, dilated floral bracts with margins and tip more or less recurved. The flowers are dark purple and large with the sepals multiveined, the lateral sepals connate into a concave synsepal; the petals are thick, three-veined; the lip is type A with the three veins thickened on the dorsum as low, rounded calli, the base truncate, hinged to the base of the column; column clavate, ca 1 mm wide and long, the anther and bilobed stigma apical, the foot obsolescent.

Stelis chalatantha Luer & Hirtz, sp. nov. TYPE: COLOMBIA. Nariño: above Ricaurte, 1600 m, 3 November 1979. C. Luer, J. Luer & A. Hirtz 4597 (Holotype: SEL). Fig. 6.

This large, caespitose species is characterized by one or three, loosely-flowered racemes that equal or exceed an elliptical leaf; ovate, shortly pubescent sepals; three-veined petals; and a lip with the center of the bar elevated with a glenion.
Plant large, epiphytic, densely caespitose. Ramicauls erect, slender, 5–9 cm long, with a tubular sheath from below the middle, and another 2 sheaths below and at the base. Leaf erect, coriaceous, elliptical, acute, 9–12 cm long including a petiole 1.5–2.5 cm long, the blade 1.2–1.5 cm wide in the dry state, cuneate below to the petiole. Inflorescence 1–3; 10–12 cm long, the raceme erect, lax, distichous, many-flowered; floral bracts oblique, acute, 2 mm long; pedicels 2 mm long; ovary 1.5 mm long; the peduncle ca. 2 mm long, subtended by a slender spathe 1 cm long, from a node below the apex of the ramicaul; flowers yellow; sepals glabrous, shortly pubescent, ovate, obtuse, three-veined, connate basally, the dorsal sepal 3 mm long, 2 mm wide, the lateral sepals oblique, 2.5 mm long, 2 mm wide; petals transversely ovate, concave, obtuse, 0.75 mm long, 0.9 mm wide, 3-veined, the apical margin thickened, with a transverse carina; lip type A, subquadrate, 0.4 mm long, 0.6 mm wide, 0.5 mm deep, obtuse, shallowly concave below the bar that is elevated centrally with a golenion, the dorsum convex centrally, the base broadly truncate, hinged to the base of the column; column stout, ca. 1 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Greek *chloranthos,* “with loose, relaxed flowers,” referring to the raceme.

This caespitose species is characterized by one to three, loosely flowered racemes equaling or slightly surpassing an acute, elliptical leaf. The sepals are narrowly obtuse, three-veined and shortly pubescent. The petals are also obtuse and three-veined. The lip is type A with the bar elevated centrally with a golenion.

This tall, slender, caespitose species is characterized by acute, narrowly elliptical, long-petiolate leaves and a much longer, strict raceme with protruding dorsal sepals of nutant flowers; antrorse lateral sepals; single-veined petals; and a short lip with an obtuse, triangular tip.

Plant medium or large, epiphytic, densely caespitose. Ramicauls erect, slender, 6–10 cm long, with a close, tubular sheath from near the middle, and another 1–2 sheaths below and at the base. Leaf erect, coriaceous, narrowly elliptical, acute, 8–10 cm long including a slender petiole 2.5–3 cm long, 1–1.3 cm wide in the dry state, cuneate below into the petiole. Inflorescence single; 12–20 cm tall, the raceme erect, strict, congested, distichous, many-flowered with many flowers open simultaneously, floral bracts tubular, obtuse, 2 mm long, pedicels 1.5 mm long; ovary 1 mm long; the peduncle 3–5 cm long, subtended by a spathe 6–7 mm long, from a node near the apex of the ramicaul; flowers light green; sepals glabrous, the dorsal sepal suffused with rose, erect, elliptical, obtuse to rounded at the lip, 4.5 mm long, 2.25 mm wide, 3-veined, connate basally to the lateral sepals, the lateral sepals antrorse, ovate, subacute, oblique, 4 mm long, 2.6 mm wide, 3-veined, connate 1 mm; petals transversely ovate, concave, 0.75 mm long, 0.9 mm wide, 1-veined, the apical margin rounded and thickened, without a transverse carina; lip subquadrate, 0.5 mm long, 0.8 mm wide, 0.5 mm deep, with a shallow, semicircular depression below the bar, the apex truncate with an obtuse, triangular tip, the dorsum with a central, suborbicular callus, the base truncate, connate to the base of the column; column clavate, ca. 0.5 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Latin *climacella,* “a little ladder,” referring to the long, erect raceme with protruding dorsal sepals like steps.

This slender, caespitose species is distinguished by narrowly elliptical, long-petiolate leaves, far exceeded by a long, distichous, many-flowered raceme with evenly spaced, nutant flowers with conspicuous, horizontally oriented dorsal sepals. The petals are single-veined. The lip is a modified type A with a broadly subtruncate apex with a short, obtuse, marginal triangle.
Figure 5. Stelis bracteolenta Luer & R. Escobar

Figure 6. Stelis chalastantha Luer & Hirtz

Figure 7. Stelis clematis Luer & R. Escobar

Figure 8. Stelis climatella Luer & R. Escobar
Stelis cyathochila Luer & R.Escobar, sp. nov. TYPE:
COLOMBIA. Valle del Cauca: Alto de Los Galápagos,
below the pass between Valle del Cauca and Chocó, 1750
m, 13 May 1993, C. Luer, J. Luer & R. Escobar 16812
(MO). Fig. 9.

This huge, caespitose species is characterized by a tall
ramicaul; a large, elliptical leaf; a long, many-flowered
raceme with imbricating floral bracts; obtuse, multi-veined
sepals; three-veined petals; and a lip with a cleft bar and an
obtuse apex.

Plant large, epiphytic, densely caespitose. Ramicauls
erect, stout, 20–22 cm tall, with a loose tubular sheath on
the upper third, another two sheaths below at the base. **Leaf**
erect, coriaceous, ovate, subacute, 15 cm long including a
petiole 1.5 cm long, the blade 4 cm wide in the dry state,
cuneate below to the petiole. **Inflorescence** single; to 45
cm tall, the raceme erect, congested, distichous, many-
flowered; floral bracts imbricating, oblique, acute, 6–7 mm
long; pedicels 3 mm long; ovary 2 mm long; the peduncle
5–7 cm long, subtended by a spathe 17 mm long, from a
node below the apex of the ramicaul; flowers bright yellow-
green; **sepals** glabrous, transversely ovate, obtuse, connate
to near the middle, the dorsal sepal 3.5 mm long, 4.5 mm
wide, 5-veined, with an accessory pair, the lateral sepals
3.5 mm long, 4.5 mm wide, 5-veined; **petals** transversely
elliptical, 1.5 mm long, 1.75 mm wide, 3-veined, concave
below a thick, rounded apex, without an obvious transverse
carina; **lip** type A, subquadrate, 1 mm long, 1.5 mm wide,
1 mm deep, shallowly concave below the bar, cleft with a
depth glenion, broadly obtuse at the apex, the dorsum convex
with a row of three, rounded calli, the base broadly truncate,
hinged to the base of the column; **column** stout, ca. 1.5 mm long and wide, the anther and the stigmatic lobes apical.

Eponymy: Named for the Colossus of Rhodes, the
gigantic monument, one of the Seven Wonders of the
Ancient World.

The bright yellow-green flowers of this huge species are
produced on a tall raceme of large, imbricating floral bracts.
Only one loose sheath is present on the upper third of a
nearly naked ramicaul, the other sheaths being at the base.
The leaf is large and petiolate. The sepals are transversely
ovate, obtuse and five-veined, and the type A lip is obtuse
with a deep glenion, broadly obtuse at the apex, the dorsum convex
with a thick, rounded calli on the dorsum.

This species is similar to *Stelis purdiaei* Lindl. with
the large leaf borne by a tall ramicaul with a loose sheath
above the middle, but instead of a few, slender racemes with
small floral bracts, the single raceme is stout with large,
imbricating floral bracts.

Stelis dasysepala Luer & R.Escobar, sp. nov. TYPE:
COLOMBIA. Antioquia: W of Medellín, E of Boquerón.
2380 m, 22 April 1983, C. Luer, J. Luer, R. Escobar et al.
8749 (Holotype: SEL). Fig. 11.

This small, caespitose species is distinguished by
narrowly elliptical petals exceeded by a distichous,
subflexuous raceme; ovate, coarsely pubescent, three-
veined sepals; three-veined petals; and a rounded lip with a
callus that extends over the bar from the dorsum to descend
into a glenion.

Plant small, epiphytic, densely caespitose, roots slender.
Ramicauls erect, fasciculate, stout, 1–1.5 cm long, with
a loose, tubular sheath from below the middle and another
sheath at the base. **Leaf** erect, coriaceous, narrowly elliptical,
subacute, 2.5–3 cm long, 0.4–0.5 mm wide in the dry state,
narrowed below to the base with an indistinct petiole ca.
0.5 cm long. **Inflorescence** single; 6–8 cm tall, the raceme
erect, subflexuous, distichous, many-flowered, with several
flowers open simultaneously; floral bracts oblique, acute,
2 mm long; pedicels 3 mm long; ovary 1.5 mm long; the
peduncle ca. 3 cm long, from a node at the tip of the ramicaul,
with a spathe ca. 3 mm long; flowers purple; **sepals** coarsely
pubescent, expanded, ovate, subacute, 3-veined, connate
to near the middle, the dorsal sepal 2 mm long, 2.5 mm
wide, the lateral sepals 2.5 mm long, 2.5 mm wide; **petals**
transversely elliptical, thin, concave, narrowly thickened...
on the margin of a subtruncate apex, without a transverse carina, 1 mm long, 1.4 mm wide, veined; lip subquadrate, 1 mm long, 1.3 mm wide, 0.7 mm deep, shallowly concave below the bar with an elevated callus that descends over the bar into a glenion, the apex rounded, the dorsum with the central callus that descends forward, the base truncate, hinged to the base of the column; column clavate, ca. 1 mm long, 1.3 mm wide, 0.7 mm deep, shallowly concave on the margin of a subtruncate apex, without a transverse carina; the bar into a glenion, the apex rounded, the dorsum with a low, central callus, the base truncate, attached to the base of the column; flowers dark purple; sepals glabrous, transversely ovate, obtuse, 3–4 mm long; pedicels 1.5–2.5 mm long; ovary 1–1.5 mm long; the peduncle 2–3 cm long, subtended by a slender spathe 12 mm long, from a node at the apex of the ramicaul; flowers purple; sepals glabrous, transversely ovate, obtuse, connate near the middle, the dorsal sepal 5 mm long, 5.75 mm wide, 5-veined, the lateral sepals oblique, 3 mm long, 4.75 mm wide, 4-veined; petals thick, transversely semilunate with the angles rounded, the apex round with a broad, convex margin, shallowly concave, deeply concave below a transverse carina, 1 mm long, 1.25 mm wide, 3-veined; lip subquadrate, concave below a shallowly notched bar, 0.75 mm long, 0.75 mm wide, 1 mm deep, the apex triangular, acute, the base truncate, hinged to the base of the column; column stout, ca. 1 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Greek glochochilus, “an arrow-headed lip,” referring to the pointed labellum.

Additional specimens examined: COLOMBIA. Antioquia: Frontino, Alto de Cuevas. above Nutibara, 2050 m, 3 May 1983, C. Luer, J. Luer, R. Escobar et al. 8962 (Holotype: SEL). Fig. 13–14.

This medium-sized to large species is characterized by an acute, elliptical leaf exceeded by a congested, distichous raceme of large, purple, totally glabrous flowers with transversely ovate sepals; a five-veined dorsal sepal; proportionately large, thick petals; and a totally glabrous lip with an acute, triangular apex.

Plant medium to large in size, epiphytic, caespitose. Ramicauls erect, slender, 5–13 cm long, with a close, tubular sheath from below the middle, and another 1–2 sheaths below and at the base. Leaf erect, coriaceous, elliptical, acute, 8–13 cm long including a petiole 1.5–2 cm long, the blade 1–1.5 cm wide in the dry state, narrowly cuneate below into the petiole. Inflorescence single; to 18 cm long, the raceme erect congested, distichous, many-flowered with many flowers open simultaneously, floral bracts oblique, acute, 3–4 mm long; pedicels 1.5–2.5 mm long; ovary 1–1.5 mm long; the peduncle 2–3 cm long, subtended by a slender spathe 12 mm long, from a node at the apex of the ramicaul; flowers purple; sepals glabrous, transversely ovate, obtuse, connate near the middle, the dorsal sepal 5 mm long, 5.75 mm wide, 5-veined, the lateral sepals oblique, 3 mm long, 4.75 mm wide, 4-veined; petals thick, transversely semilunate with the angles rounded, the apex round with a broad, convex margin, shallowly concave, deeply concave below a transverse carina, 1 mm long, 1.25 mm wide, 3-veined; lip subquadrate, concave below a shallowly notched bar, 0.75 mm long, 0.75 mm wide, 1 mm deep, the apex triangular, acute, the base truncate, hinged to the base of the column; column stout, ca. 1 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Greek glochochilus, “an arrow-headed lip,” referring to the pointed labellum.

Additional specimens examined: COLOMBIA. Antioquia: Frontino, Alto de Cuevas. above Nutibara, 2050 m, 3 May 1983, C. Luer, J. Luer, R. Escobar et al. 8940 (SEL); Yarumal, road to El Cedro, 1650 m, 15 March 1989, C. Luer, J. Luer, S. Dalström & W. Teague 14155 (MO).

This large species is characterized by a crowded, distichous raceme of large purple flowers, transverse sepals with the dorsal sepal 5-veined, and thick, proportionately large, semilunate petals. The lip is concave below a shallowly notched bar with the apex triangular and acute.

Stelis glochocila is related to Stelis barbuda O.Duque, but differs with leaves half the width; short, close, cauleine sheaths instead of long and loose; and totally glabrous sepals and lip in all three cited collections, instead of sepals with villous edges and papillose-villous within, and lip without “a tuft of short hairs.”

Stelis hercules Luer & R.Escobar, sp. nov. TYPE: COLOMBIA. Cauca: La Vega, Páramo de Las Barbillas, 3150 m, 13 November 1982, C. Luer & R. Escobar 8360 (Holotype: SEL). Fig. 15.

This large, robust, repent species is characterized by a thick rhizome; erect ramicaul; large, petiolate leaves
Figure 9. Stelis collossus Luer & R. Escobar

Figure 10. Stelis cyathochila Luer & R. Escobar

Figure 11. Stelis daysepata Luer & R. Escobar

Figure 12. Stelis divericans Luer & R. Escobar
exceeded by a much longer raceme with medium-sized flowers with three-veined, long-pubescent sepals; three-veined petals; and an ovoid lip with a rounded apex.

Plan t large, epiphytic, repent, the rhizome stout, 3 mm thick, 3–5 cm long between ramicauls. Ramicauls erect, stout, 9–11 cm long, with a tubular sheath from below the middle, and another 1–2 sheaths below and at the base. _Leaf_ erect, coriaceous, elliptical, subacute, 9–11 cm long including a petiole 2–2.5 cm long, the blade 2.5–3.5 cm wide in the dry state, cuneate below into the petiole. _Inflorescence_ single; 18-25 cm tall, the raceme erect, loose, distichous, many-flowered; floral bracts oblique, acute, 3–4 mm long; pedicels 2 mm long; ovary 2 mm long; the peduncle 10–12 cm long, subtended by a slender spathe 1.3–1.8 mm long, from a node below the apex of the ramicaul; _sepals_ dull yellow, pubescent, ovate, 3–veined, connate below the middle, concave in the basal quarter, the dorsal sepal subacute, 5 mm long, 4 mm wide, the lateral sepals obtuse, 3 mm long, 5 mm wide; _petals_ yellow-green, transversely oblong, the apex rounded with a narrowly thickened margin, concave, with a minimal transverse carina. 2 mm long, 2.5 mm wide, 3-veined; _lip_ yellow-green, ovoid, 2 mm long, 2 mm wide, 1.5 mm deep, concave below a thick bar with a thick-rimmed glenion, the apex broadly obtuse apex, the dorsal convex, pubescent, the base truncate, hinged to the base of the column; _column_ clavate, ca. 2.5 mm long, 2 mm wide. connate to the base of the column, the anther and the stigmatic lobes apical.

Eponymy: Named for Hercules, a mythological character with great strength, referring to the robust habit.

Vegetatively, this large, robust, repent species of the Central Cordillera of the department of Cauca, is indistinguishable from _Stelis samson_ Luer & R.Escobar, published herein, of the Eastern Cordillera, but it differs with long-pubescent, instead of glabrous sepals, and a lip with long-pubescent, instead of glabrous sepals, and a lip that is thick and concave beneath a deeply cleft bar.

Stelis hyptitera Luer & R.Escobar, _sp. nov._ TYPE: COLOMBIA. Antioquia: La Union, Sonsón, coll. by E. Valencia, fl. in cult. at Colomoroquideas, 23 May 1995, C. Luer 17571 (Holotype: MO). Fig. 17.

This tall, caespitose species is characterized by ramicauls much longer than large, elliptical-ovate, petiolate leaves; three or four racemes twice longer than the leaf; ovate, pubescent sepals; thick, three-veined petals; and a short lip with rounded apex and a single, round callus on the dorsum.

Plan t large, epiphytic, caespitose; roots slender. Ramicauls erect, slender, 28–34 cm long, with a close, tubular sheath above the middle, and another 2 sheaths below and at the base. _Leaf_ erect, coriaceous, multiveined, elliptical-ovate, acute, petiolate, 13–15 cm long including a petiole 3–3.5 cm long, the blade 3.5–4.5 cm wide in the dry state, cuneate below into the petiole. _Inflorescence_ 3–4 simultaneous; 15–22 cm long, the racemes erect, distichous, strict, many-flowered, with many flowers open simultaneously; floral bracts tubular, obtuse, 2 mm long; pedicels 1 mm long; ovary 1 mm long; the peduncle 2–3 cm long, subtended by a spathe 1.5–1.8 cm long, from a node below the apex of the ramicaul; flowers light yellow; _sepals_ expanded, pubescent, more or less convex, subacute to obtuse, connate below the middle, the dorsal sepal, 4.5 mm long, 3.5 mm wide, 5-veined, the lateral sepals oblique, 3.5 mm long, 3 mm wide, 4-veined; _petals_ thick, transversely semilunate, the apex rounded with the corners acuminate, 0.8 mm long, 1.4 mm wide, 3-veined, concave below the thickened margin, and connate below a transverse carina; _lip_ obovoid, 0.75 mm long, 0.8 mm wide, 0.5 mm deep, shallowly concave below the bar and within the obtuse apex with a thickened margin, the dorsum with a single, central, rounded callus, the base truncate, hinged to the base of the column; _column_ stout, ca. 1 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Greek _hyptiteros_, “higher,” referring to the inflorescences being taller than those of vegetatively similar species.

The flowers of this large, tall, caespitose species are
similar to those of *Stelis grandiflora* Lindl., but distinguished by proportionately much longer ramicauls, about thrice longer than broad, multiveined leaves; three to four simultaneous racemes much longer than the leaf; ovate, multiveined, pubescent sepals; thick, three-veined petals; and a type A lip with a solitary, round callus on the dorsum.

Stelis lacertina Luer & R. Escobar, *sp. nov.* TYPE: COLOMBIA. Risaralda: Fl. in cult. by S. Tsubota at Ran Orchids, Pereira, 10 May 1993, *C. Luer 16761* (Holotype: MO). Fig. 18.

This large, caespitose species is characterized by three or four long, many-flowered racemes of flowers with an antrorse dorsal sepal that is connate nearly a third of its length into a mentum; a synsepal formed by semiconnate lateral sepals; and a shallow lip with a short, broadly and deeply cleft bar.

Plant large, epiphytic, densely caespitose; roots slender. Ramicaul erect, stout, 5–14 cm long, with a loose, tubular sheath from below the middle, and another 1–2 sheaths below and about the base; *Leaf* erect, coriaceous, elliptical-ovate, obtuse to rounded at the tip, 9–12 cm long including a petiole 1.5–2 cm long, the blade 1–2.3 cm wide in the dry state, cuneate below into the petiole. *Inflorescence* 3–4; 12–18 cm tall, the raceme erect, strict, second, congested, simultaneously flowered; floral bracts tubular, obtuse, 2 mm long; pedicels 2 mm long; ovary 1 mm long; the peduncle 2–3 cm long. subtended by a slender spathe 1.5–2 cm long, from a node below the apex of the ramicaul; flowers green; *sepals* glabrous, the dorsal sepal ovate, subacute, 5 mm long, 2.75 mm wide, 3-veined, connate 1.5 mm to the synsepal, the lateral sepals ovate, acute, oblique, connate to the middle into a concave synsepal; *petals* subquadrate, 0.6 mm long, 1 mm wide, 3-veined, concave within the rounded, thickened apical margin, with an indistinct transverse callus; *lip* subquadrate, 0.5 mm long, 0.7 mm wide, 0.5 mm deep, concave below a shortly but widely cleft bar with a concave glenion, the apex rounded, the margins thin, the dorsum with a rounded, midline callus; the base truncate, hinged to the base of the column; *column* ca. 0.75 mm broad and long, the anther and stigmatic lobes apical.

Etymology: From the Latin *lacertinus*, “like a lizard,” referring to the flower resembling the head of a lizard.

This large, caespitose species is characterized by stout ramicauls clad in long, loose, tubular sheaths, elliptical-ovate leaves, and three or four longer racemes of numerous, green flowers. The dorsal sepal is connate to the lateral sepals for nearly two millimeters to form the roof of a retrorse chin of the synsepal. The synsepal is formed by semiconnate lateral sepals with recurving margins. The petals are three-veined. The lip is a variation of type A with a short, rounded apex, a deeply concave glenion descending from a broad cleft in the bar, and a round callus in the center of the dorsum.

This small to medium-sized, caespitose species is characterized by loose racemes longer than acute, narrowly ovate leaves; obtuse, three-veined sepals; thick, three-veined petals; and a subquadrate, obtuse lip with an orbicular callus on the dorsum.

Plant small to medium in size, epiphytic, densely caespitose; roots slender. Ramicauls slender, erect, 4–7 cm long, enclosed by a close, tubular sheath from below the middle, and another 1–2 sheaths below and at the base. *Leaf* erect, coriaceous, narrowly ovate, acute, 5–6 cm long including a petiole ca. 1.5 cm long, the blade 0.5–0.8 cm wide in the dry state, narrowly cuneate below to the petiole. *Inflorescence* 1–2; 5–11 cm tall, the racemes erect, strict, distichous, loosely many-flowered; floral bracts oblique, acute, 2 mm long and wide; pedicel 1.5 mm long; ovary 1.5 mm long; peduncle 2–3 cm long, from the apex of a ramicaul with a spathe ca. 5 mm long; flowers purple; *sepals* glabrous, broadly ovate, obtuse, 3-veined, the dorsal sepal 4 mm long, 4 mm wide, the lateral sepals 3 mm long, 3 mm wide; *petals* transversely ovate, 1 mm long, 1.6 mm wide, 3-veined, concave, the apical margin rounded, thickened, with a transverse carina; *lip* subquadrate, 0.6 mm long, 1 mm wide, 0.5 mm deep, shallowly concave below the bar, the apex obtuse with thickened margin, the dorsum with a central, orbicular callus, the base truncate, hinged to the column-foot; *column* stout, ca. 1 mm long and wide, the anther and small stigmatic lobes apical.

Etymology: From the Greek *lagaranthos*, “loosely flowered,” referring to the raceme.

Both medium-sized and small, caespitose variations of this species grow together. They are characterized by loosely flowered racemes of purple flowers that exceed narrowly ovate, acute leaves. The sepals are broadly ovate and three-veined; the petals are thick and three-veined; and the lip is type A with a spherical callus on the dorsum.

Stelis laplanadensis Luer & Escobar, *sp. nov.* TYPE: COLOMBIA. Nariño: near Ricaurte, 1800 m, fl. in cult. at the La Planada Orquieario, 25 January 1987, *C. Luer 12515* (Holotype: MO). Fig. 20.

This caespitose species is distinguished by a congested, second raceme of small flowers that exceeds the leaf; three-veined sepals with the lateral sepals antrorse to form a concave synsepal; three-veined petals; and a lip with a broadly obtuse apex.

Plant medium in size, epiphytic, densely caespitose; roots slender. Ramicaul erect, slender, 7–8 cm long, with a close, tubular sheath on the middle third, and another 2 sheaths below and about the base. *Leaf* erect, coriaceous, elliptical, acute to subacute, 9–11 cm long including a petiole 1.5–2 cm long, the blade 1.5–2 cm wide in the dry state, cuneate below into the petiole. *Inflorescence* single; 11 cm tall, the raceme erect, second, congested, simultaneously many-flowered; floral bracts tubular, obtuse, 2 mm long; pedicels 1 mm long; ovary 1 mm long; the peduncle 2 cm long, subtended by a slender spathe 1 cm long, from a node below the apex of the ramicaul; flowers yellow; *sepals* glabrous, the dorsal sepal elliptical-oblong, convex, with the apex obtuse, 4 mm long, 2 mm wide, 3-veined, the lateral sepals ovate,
Stelis leprina Luer & R. Escobar, sp. nov. TYPE: COLOMBIA. Antioquia: El Retiro, coll. above Colomborquídeas by unknown collector, ca. 1500 m, fl in cult. at Colomborquídeas. 16 May 1993, C. Luer 16919 (Holotype: MO). Fig. 22.

This large, slender-repent species is characterized by a slender, long-creeping rhizome; long, slender ramicauls; broad, acuminate, petiolate leaves; one or two long, many-flowered racemes; and a five-veined dorsal sepal above a concave synsepal.

Plant large, epiphytic, long-repent, the rhizome slender, 1.5–2 cm long between ramicauls; roots slender. Ramicaul erect, slender, 12–20 cm long, with a close, tubular sheath on the middle third from below the middle, and another 1–2 sheaths about the base. **Leaf** erect, thinly coriaceous, 13–20 cm tall, the raceme erect, strict, secund, subdense, simultaneously many-flowered with many flowers open simultaneously; floral bracts infundibular, acute, 2 mm long; pedicels 1 mm long; ovary 1 mm long; the peduncle 6–8 mm long, subtended by a slender spathe 1 cm long, from a node below the apex of the ramicaul; **sepal** yellow-green, glabrous, the dorsal sepal ovate, subacute, 5.5 mm long, 4 mm wide, 5-veined, the lateral sepals connate to the tips into a concave, subcircular synsepal with recurved margins, 4 mm long, 6 mm wide, expanded, 8-veined; **petals** yellow-green with brown edges, semi-lunate, 0.75 mm long, 1 mm wide, 3-veined, with the rounded, apical margin thickened, with an indistinct transverse callus; **lip** subquadrate, 0.5 mm long, 0.75 mm wide, 0.6 mm deep, concave below an elevated bar with a glenion, the apex subacute, with a triangular apiculum, the margins thick, the dorsum with a rounded callus; the base truncate, hinged to the base of the column; **column** ca. 0.75 mm broad and long, the anther and stigmatic lobes apical.

Etymology: From the Greek leptorhiza, “with thin rhizome,” for obvious reasons.

This large species is long-repent with a thin, creeping rhizome that produces a tall, slender ramicaul about every two centimeters. The leaf is large, thinly coriaceous, elliptical, acuminate at the tip and long-petiolate at the base. One or two racemes of medium-sized flowers far surpass the leaf. The dorsal sepal is five-veined, the petals are three-veined, and the lip is a modified type A.
This long-repent species is similar to *Stelis scansor* Rchb.f., but differs with a larger habit, longer floral bracts, larger flowers with narrowly thickened margins, and a lip with a pubescent, basal callus.

Plant small, epiphytic, scandent, long-repent, the rhizome stout, 0.5–1 cm between ramicauls; roots slender. Ramicauls ascending, slender, 3–4 cm long, enclosed by a tubular sheath from below the middle and 1–2 other sheaths below and at the base. *Leaf* erect, coriaceous, elliptical, subacute to obtuse, 4–6 cm long including the petiole 1.5 cm long, the blade 1–1.5 cm wide in dry state, cuneate below into the petiole. *Inflorescence* solitary; 10–13 cm long, the raceme erect, strict, congested, distichous, many-flowered; floral bracts oblique, acute, 4 mm long; pedicels 1.5 mm long; ovary 1 mm long; the peduncle 5 mm long, from a node below the apex of the ramicaul; *sepal* light green above the middle, purple below the middle, glabrous, elliptical-ovate, obtuse, with narrowly thickened margins, 3-veined, connate basally, the dorsal sepal 3.5 mm long, 2.5 mm wide, the lateral sepals 3 mm long, 2.2 mm wide; *petals* green, thin, transversely elliptical, 1 mm long, 1.25 mm wide, 1-veined, concave, the apex broadly rounded without a transverse callus; *lip* green, subquadrate, 0.6 mm long, 1 mm wide, 0.75 mm deep, shallowly concave below a longitudinally grooved bar without a glosen, the apex broadly obtuse, the dorsum with a semiobicular, minutely pubescent callus at the base, the base truncate, hinged to the base of the column; *column* clavellate, elongated, 1 mm long and wide, the anther and the bilobed stigma apical.

Etymology: From the Latin *marginatus,* “margined,” referring to the narrowly thickened margins of the sepals.

This small, scandent species is superficially similar to the relatively frequent and sympatric *Stelis scansor* Rchb.f., but *S. marginata* is a larger plant with a stout rhizome with a shorter distance between ramicauls. A longer raceme with much longer floral bracts bears medium-sized flowers with obtuse, three-veiled sepals with narrowly thickened margins. The petals are similarly single-veined, and the lip is type A with a rounded, pubescent callus at the base.

This very small, caespitose species is distinguished by a narrowly elliptical leaves; a long, filamentous peduncle with a series long-pedunculate flowers; single-veined petals abruptly contracted into slender tails; and an ovate, concave lip with a basal callus that is bifurcated above the middle. *Plant* small, epiphytic, densely caespitose, roots slender. Ramicauls erect, slender, 10–20 mm long, with a tubular sheath from below the middle and another above the base. *Leaf* erect, coriaceous, narrowly elliptical, acute to subacute, 8–30 mm long, with a petiole 0.5–1 mm long, the blade 3–5 mm wide in the dry state, gradually narrowed below into the petiole. *Inflorescence* single; 4–8 cm long, the peduncle and rachis filamentous, weak, more or less arching, the raceme lax with 5–8 long-pedicellate flowers, the pedicels decreasing in length toward the tip; floral bracts acute, oblique, 1.5 mm long; pedicels 12–4 mm long; ovary 1.5 mm long; peduncle 3–5 cm long, from a node at the tip of the ramicaul; *sepal* translucent lavender, glabrous, antrorse, 3-veined, connate basally, the dorsal broadly ovate, obtuse, 2 mm long, 2.3 mm wide, the lateral sepals oblong, obtuse, oblique at the apex, 3 mm long, 1.3 mm wide, connate midway; *petal* purple, the blade subquadrate to oblong, 1.3 m wide and long excluding the tail, 1-veined, the apex truncate, abruptly contracted into a slender process 1.3 mm long; *lip* green, obovate 1.5 mm long, 1.3 mm wide, dilated and shallowly concave above the middle, the apex obtuse to rounded, the basal third oblong, thick, minutely pubescent, bifurcated near the middle at the base of the concavity, the base truncate, connate to the base of the column; *column*...
This unusual species is similar to three, small Bolivian species distinguished by a filamentous peduncle and rachis, and long-pedicellate flowers: *Stelis antennata* Garay, *Stelis ballatrix* Luer & R.Vásquez and *Stelis saltatrix* Luer & R.Vásquez. *Stelis miranda* differs from all of them by a smaller habit with narrowly elliptical leaves, single-veined petals abruptly contracted into filamentous tips, and a concave lip with a bifid callus.

Stelis molecula Luer & R.Escobar, sp. nov. **TYPE:** COLOMBIA. Norte de Santander: below Páramo de Jurisdicciones, 2600 m, 10 May 1904, C. Luer, J. Luer & R. Escobar 10218 (Holotype: MO). Fig. 26.

This very small, caespitose species is distinguished by elliptical leaves; a twice longer, subflexuous, successively-flowered raceme of tiny flowers; subacute sepals about one millimeter long; single-veined petals; an ovate lip with a large central callus; and stigmatic surfaces within the clinandrium.

Plant very small, epiphytic, caespitose, sometimes forming large clumps, roots slender. Ramicauls erect, slender, 5–8 mm long, enclosed by 2 close, tubular sheaths. *Leaf* erect, coriaceous, elliptical, acute, 5–12 mm long, 2–3 mm wide in the dry state, narrowed below to the subpetiolate base. *Inflorescence* single; 3–4 cm long, the raceme erect, subflexuous, successively many-flowered with several flowers open simultaneously; floral bracts oblique, acute, 1 mm long; pedicels 1 mm long; ovary 0.5 mm long; the peduncle 1–1.5 mm long, from the apex of a ramicaul; flowers purple; *sepals* glabrous, expanded, ovate, obtuse, 3-veined, connate basally, 1 mm long, 1 mm wide; *petals* broadly ovate, thin, slightly thickened on the rounded margin, 0.75 mm long, 0.75 mm wide, 1-veined; *lip* ovoid, 0.5 mm long, 0.5 mm wide, 0.5 mm deep, concave surrounding a round, central callus within the obtuse, thickened margin of the obtuse apex, thickened and microscopically pubescent at the base of the callus, the base truncate, hinged to the base of the column; *column* ca. 0.8 mm broad and long, the anther and stigmatic lobes apical.

Etymology: From the Latin *molecula*, diminutive *moles*, “a mass that cannot be divided,” referring to the minute size.

This very small, caespitose species is characterized by slender ramicauls, an elliptical leaf less than one centimeter wide, and one or two longer multiflowered racemes of purple, bilabiate flowers. The dorsal sepal is connate to the lateral sepals for nearly two millimeters to form the roof of the retrorse mentum at the base of the inflated synsepal. The petals are three-veined. The lip is a variation of type A with a bar forked near the middle, and a trilobed-truncate apex, a low, obtuse, marginal triangle being the middle lobe between obtusely angled corners.

Stelis nesosa Luer & R.Escobar, sp. nov. **TYPE:** COLOMBIA. Tolima: terres trial on the road cut to the TV antenna, La Linea, between Ibagué and Armenia, 3500 m, 20 October 1982, C. Luer & R.Escobar 8491 (Holotype: SEL). Fig. 28.

This small, species is distinguished by clusters of branching, overlapping rhizomes; narrowly elliptical leaves about as long as the ramicaul, and surpassed by a loose, several-flowered raceme; obtuse, three-veined sepals; single-veined petals; and a lip with a raised callus across the bar.

Plant small, terrestrial, epiphytic, repent, the rhizome branching, slender, 2–5 mm long between ramicauls; roots slender. Ramicauls ascending, slender, branching, 1–1.5 cm long, enclosed by a tubular sheath and another sheath at the base. *Leaf* erect, coriaceous, narrowly elliptical, acute, 1–2 cm long including an ill-defined petiole, 2–3 mm wide, with an antrorse dorsal sepal connate a third of its length to a synsepal formed by the inflated base of the synsepal; and a subquadrate lip with a truncate, three-lobed apex.

Plant medium in size, epiphytic, densely caespitose; roots slender. Ramicaul erect, slender, 4–6 cm long, with a tubular sheath on the middle third, and another 1–2 sheaths below and about the base; *Leaf* erect, coriaceous, narrowly elliptical, acute, 5–7 cm long including a petiole 1.5 cm long, the blade 0.5–0.8 cm wide in the dry state, cuneate below into the petiole. *Inflorescence* 1–2; 13–15 cm tall, the racemes erect, strict, secund, congested, multiflowered with many flowers open simultaneously, floral bracts tubular, subacute, 3 mm long; pedicels 2 mm long; ovary 2.5 mm long; the peduncle ca. 3 cm long, subtended by a slender spathe 1 cm long, from a node below the apex of the ramicaul; flowers purple; *sepals* glabrous, the dorsal sepal antrorse, oblong-ovate, subacute, 5 mm long, 2 mm wide, 3-veined, connate ca. 2 mm to the synsepal, the lateral sepals connate to the tip into a suborbicular synsepal, 4.5 mm long, 4.5 mm wide unexpanded, each 3-veined; *petals* transversely ovate, 0.75 mm long, 1.3 mm wide, 3-veined, concave within the obtuse, thickened apical margin, with an indistinct transverse callus; *lip* subquadrate, 1.25 mm long, 0.75 mm wide, 0.75 mm deep, concave below a widely cleft bar near the middle of the lip with an incomplete glenion, the apex truncate, indistinctly 3-lobed, the lateral angles obtuse, the middle lobe being an obtuse triangle, the dorsum convex centrally; the base truncate, hinged to the base of the column; *column* ca. 0.8 mm broad and long, the anther and stigmatic lobes apical.

Etymology: From the Latin *nopicus*, “biting, snapping,” an allusion to the fancied appearance of the flower. This medium-sized, caespitose species is characterized by slender ramicauls, an elliptical leaf less than one centimeter wide, and one or two longer multiflowered racemes of purple, bilabiate flowers. The dorsal sepal is connate to the lateral sepals for nearly two millimeters to form the roof of the retrorse mentum at the base of the inflated synsepal. The petals are three-veined. The lip is a variation of type A with the bar forked near the middle, and a trilobed-truncate apex, a low, obtuse, marginal triangle being the middle lobe between obtusely angled corners.

Stelis mordica Luer & R.Escobar, sp. nov. **TYPE:** COLOMBIA. Cauca: Páramo de Guanacas, between Totoró and Inza, 2850 m, 15 November 1982, C. Luer & R. Escobar 8411 (Holotype: SEL). Fig. 28.

This small, species is distinguished by clusters of branching, overlapping rhizomes; narrowly elliptical leaves about as long as the ramicaul, and surpassed by a loose, several-flowered raceme; obtuse, three-veined sepals; single-veined petals; and a lip with a raised callus across the bar.

Plant small, terrestrial, epiphytic, repent, the rhizome branching, slender, 2–5 mm long between ramicauls; roots slender. Ramicauls ascending, slender, branching, 1–1.5 cm long, enclosed by a tubular sheath and another sheath at the base. *Leaf* erect, coriaceous, narrowly elliptical, acute, 1–2 cm long including an ill-defined petiole, 2–3 mm wide, dry,
gradually narrowed below to the base. **Inflorescence** single; 2–4 cm long, the raceme erect, loosely 6–10-flowered, with several flowers open simultaneously; floral bracts tubular, acute, 1.5 mm long; pedicels 0.5 mm long; ovary 1–2 mm long; the peduncle ca. 1 cm long, from a node at the apex of the ramicaul; **sepal**s light green, expanded, similar, glabrous, broadly ovate, obtuse, connate below the middle, 3-veined, the dorsal sepal 2.2 mm long, 2 mm wide, the lateral sepals 1.75 mm long, 2 mm wide; **petals** yellow-brown, transversely obovate, concave, 0.5 mm long, 0.9 mm wide, 1-veined, the apex broadly obtuse; **lip** dark brown, subquadrangular, 0.6 mm long, 0.9 mm wide, 0.5 mm deep, concave within the broadly rounded apex, the dorsum with a flat, raised callus that begins at the base, narrows at the middle as it curves downward and descends, the base truncate, hinged to the base of the column; **column** ca. 0.75 mm broad and long, the anther and stigmatic lobes apical.

Etymology: From the Latin oblector, “a charmer,” referring to pleasing qualities of the plant.

This caespitose species is distinguished by a long, loosely flowered raceme with a peduncle longer than an elliptical leaf. A convex dorsal sepal stands above a suborbicular synsepal created by connate, concave lateral sepals. The petals are single-veined, and the apex of the lip is a subacute, triangular apiculum.

Stelis ocreosa Luer & R. Escobar, *sp. nov.* **TYPE:** COLOMBIA. Cauca: Páramo de Puracé, terrestrial on the road cut W of the pass, 3200 mm, 14 November 1982, C. Luer & R. Escobar 8391 (Holotype: SEL). Fig. 30.

This small, caespitose species is distinguished by purple floral bracts longer than obtuse, three-veined sepals in a raceme that exceeds the leaf; single-veined petals; and an obtuse lip with a large glenion.

Plant small, epiphytic, caespitose; roots slender. Ramicauls erect, slender, 5–15 mm long, enclosed by a loose, tubular sheath from near the middle and another 1–2 sheaths below and at the base. **Leaf** erect, coriaceous, elliptical-ovate, subacute, 7–8 cm long including a petiole 1.5 cm long, the blade 1.6–1.7 cm wide in the dry state, cuneate below into the petiole. **Inflorescence** single; 6–7 mm long, the raceme erect, strict, distichous successively many-flowered; floral bracts purple, acute, oblique, 3–4 mm long; pedicels 1.5–2 mm long; ovary 1 mm long; the peduncle 2–3 cm long, from a node at the apex of the ramicaul; **sepal**s yellow, brown centrally, glabrous, ovate, obtuse, 3-veined, connate basally, the dorsal sepal 2.5 mm long, 2.25 mm wide, the lateral sepals 2.5 mm long, 2 mm wide; **petal**s yellow-green, transversely elliptical, 1 mm long, 1.3 mm wide, 1-veined, concave, the apex rounded with the margin narrowly thickened; **lip** yellow-green, type-A, subquadrangular, 0.8 mm long, 1 mm wide, 0.5 mm deep, concave below a thick, cleft bar with a deep glenion, the apex truncate, with a short, low apiculum, the dorsum cleft, the base truncate, hinged to the base of the column; **column** clavate, ca. 1 mm long and wide, the anther and the bilobed stigma apical.

Etymology: From the Latin ocreus, “with well-developed sheaths,” referring the large, purple floral bracts.

This little, caespitose species differs from the numerous variations allowed in *Stelis pusilla* Kunth by having larger flowers; conspicuous, large, purple floral bracts; and a lip with a cleft bar and large glenion.

Stelis ophiodontodes Luer & R. Escobar, *sp. nov.* **TYPE:** COLOMBIA. Antioquia: Unión, 2400 m, coll. by E. Valencia, 1991. fl. in cult. at Colomboquiripes, 27 December 1992, R. Escobar 5142 (Holotype: SEL), C. Luer illustr. 21914. Fig. 31.

With long stigmatic processes this species is similar to the Ecuadorian *Stelis odobenella* Luer, but differs with a strict raceme, instead of flexuous, and with details of the lip, which lacks the pair of mammiliform calli, and possesses a single callus on the acutely descending, concave dorsum.

Plant small, epiphytic, caespitose; roots slender.
Ramicauls erect, slender, 13 mm long, enclosed by 2–3 thin, tubular sheaths. Leaf erect, coriaceous, elliptical, subacute to obtuse, 35 mm long including a petiole ca. 10 mm long, 6 mm wide, cuneate below into the petiole. Inflorescence single; 7 cm long including a peduncle 3 cm long, the raceme erect, strict, lax, several-flowered with 3–4 flowers open simultaneously, the peduncle from an anellus below the apex of the ramicaul; floral bracts oblique, acute, 1.5 mm long; pedicels 1.5 mm long; ovary 1 mm long; sepals glabrous, the dorsal sepal red, erect, broadly ovate, obtuse, 5 mm long, 5 mm wide, 3-veined, connate basally to the synsepal for 1 mm, the lateral sepals white, connate into a broadly ovoid, deeply concave synsepal, 6 mm long, 6 mm wide expanded; petals red, transversely ovate, 0.5 mm long, 1.25 mm wide, 3-veined, concave basally, thickened transversely across the middle, the apex broadly rounded, thickened on the margin; lip red, subtriangular, 0.75 mm long, 0.75 mm wide, 0.5 mm deep, the bar elevated and thin between narrow sides, the anterior surface featureless behind an obtuse, thickened, broadly obtuse, apical margin, the dorsum, or posterior surface, acutely descending and concave with a central callus, prominently 3-veined to the truncate base, hinged to the base of the column; column stout, ca. 0.5 cm long and wide, the anther and the bilobed stigma apical, each stigma with a fang-like process 1 mm long.

Etymology: From the Greek ophiodontodes, “like fangs (snake teeth),” referring to the elongated stigmatic processes.

This species is allied to Stelis odobonella Luer which is frequent in southeastern Ecuador. Except for a trivial difference of a strict, instead of a flexuous rachis, the plants are very similar, but the lips differ. The pair of mammillate calli found in S. odobonella are absent. The dorsum, or steeply sloping posterior surface of the lip, is concave with a central callus.

Stelis oreibator Luer & R. Escobar, sp. nov. TYPE: COLOMBIA. Nariño: near the pass between Pasto and La Cocha, 3150 m, 27 January 1987, C. Luer, J. Luer & C. Dodson 12549 (Holotype: MO). Fig. 32.

This medium to large, coarsely repent species is characterized by a thick rhizome; stout ramicauls bearing elliptical leaves and a longer raceme of flowers with ovate, three-veined, pubescent sepals; three-veined petals; and a subquadrate lip with a large callus filling the disc.

Plant medium to large, epiphytic, coarse, ascending-repent, the rhizome stout, branching, 4–5 mm thick, 1–2 cm long between ramicauls; roots coarse. Ramicauls ascending, stout, 5–6 cm long, enclosed by tubular sheath from below the middle, and 1–2 sheaths above the petiole. Leaf erect, coriaceous, elliptical, acute to subacute, 6–7 cm long including a petiole 1–1.5 mm long, the blade 1.5–2.5 cm wide in the dry state, cuneate below into the petiole. Inflorescence single; 15–18 cm tall, the raceme strict, erect, congested, distichous, simultaneously many-flowered; floral bracts tubular, obtuse, 3 mm long; pedicels 2 mm long; ovary 1.5 mm long; the pedicule 3–4 cm long, subtended by a spathe 12 mm long, from a node below the apex of the ramicaul; sepals yellow with rose pubescence, ovate, connate below the middle, 3-veined, the dorsal sepal acute, 5.5 mm long, 3 mm wide, the lateral sepals oblique, obtuse, 2.5 mm long, 3.75 mm wide; petals yellow, thin, concave, subcircular, thickened on the apical margin, 1.3 mm long, 1.3 mm wide, 3-veined; lip yellow, subquadrate, 1.5 mm long, 1.4 mm wide, 1.3 mm deep, the apex broadly rounded, thin, concave below a thick, shallowly cleft callus that occupies ca. 75% of the disc, the base truncate, hinged to the base of the column; column ca. 1 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Greek otaros, “large-eared,” referring to the proportionately large petals.

This large, densely caespitose species is distinguished by...
a flexuous, many-flowered raceme of large, bilabiate flowers that exceeds an acute, elliptical leaf. The dorsal sepal is five-veined; the partially connate, multiveined lateral sepals are antrorse to form an imperfect synsepal; the petals are thick, three-veined, and proportionately large, dominating the central apparatus. The lip is suborbicular and concave within a broadly rounded apex.

Stelis ozota Luer & R. Escobar, sp. nov. **TYPE:** COLOMBIA. Putumayo: between La Cocha and Sibundoy, 2700 m, 30 July 1978, C. Luer, J. Luer, R. Escobar et al. 3107 (Holotype: SEL). Fig. 34.

This species is distinguished by prolific ramicauls; oblong, obtuse leaves; a many-flowered, subflexuous raceme; three-veined, dark purple flowers with obtuse, three-veined sepals; three-veined petals; and an obovoid, broadly obtuse lip with a thin, shelf-like bar.

Plant medium in size to large, epiphytic, caespitose; roots slender. Ramicauls erect, slender, 5–16 cm long, with a tubular sheath from below the middle, and 1–2 other sheaths below and at the base. **Leaf** erect, coriaceous, oblong, obtuse, 4.5–8 cm long, including a petiole 1–2 cm long, the blade 1.5–2.5 cm wide in dry state, cuneate below into the petiole. **Inflorescence** single; 7–12 cm long, the raceme erect, subflexuous, distichous, simultaneously many-flowered; floral bracts oblique, inflated, acute, acuminate, 3 mm long; pedicels 1.5 mm long; ovary 1.5 mm long; the peduncle 3–4 cm long, from a spathe 1 cm long near the apex of the ramicaul; flowers dark purple; **sepal** purple, transversely semilunate, 1 mm long, 1.75 mm wide, 3-veined, with the apical margin broadly rounded, thickened, with a transverse carina; **lip** purple, subquadrate, 0.6 mm long, 1 mm wide, 0.75 mm deep, concave below a protruding, shallowly sulcate bar, the apex broadly rounded, the dorum with a central, hemispherical callus flanked by a smaller calli on either side; the base truncate, hinged to the base of the column; **column** ca. 1 mm broad and long, the anther and stigmatic lobes apical.

Etymology: From the Greek *ozotos,* “branched,” referring to the prolific habit.

This species with prolific ramicauls is distinguished by a subflexuous raceme of dark purple flowers that exceeds an oblong, obtuse leaf. The sepals and petals are three-veined. The lip is concave below a thin, transverse bar.

Stelis pachoi Luer & R.Escobar, sp. nov. **TYPE:** COLOMBIA. Antioquia: Altos de Fitzebad, coll. by Pacho Lopez, fl. in cult. at Colombróquideas, 23 May 1995, C. Luer 17603 (Holotype: MO). Fig. 35.

This medium-sized, caespitose species is distinguished by an erect, sublax, subflexuous many-flowered raceme that exceeds a narrowly elliptical leaf; a five-veined dorsal sepal spread ca. 180° from an eight-veined synsepal; three-veined petals; and a rounded lip with protruding bar and tricallous dorsum.

Plant medium in size, epiphytic, densely caespitose; roots slender. Ramicaul erect, slender, 7–10 cm long, with a tubular sheath from below the middle, and another 1–2 sheaths below and about the base. **Leaf** erect, coriaceous, elliptical, acute, 10–13 cm long including a petiole 2–3 cm long, the blade 1.2–1.5 cm wide in the dry state, narrowly cuneate below into the petiole. **Inflorescence** 1–2; 12–20 cm tall, the racemes erect, distichous, sublax, subflexuous, many-flowered; floral bracts oblique, acute, 2–4 mm long; pedicels 2 mm long; ovary 1 mm long; the peduncle 3–5 cm long, subtended by a slender spathe ca. 8 mm long, from a node below the apex of the ramicaul; **sepal** glabrous, the dorsal sepal purple, ovate, with the apex obtuse rounded, 6 mm long, 5 mm wide, 5-veined, the lateral sepals purple with the mid-third light green, connate to the tips into an ovate synsepal, shallowly concave above the middle, 5 mm long, 5 mm wide, unexpanded, 8-veined; **petals** purple, transversely semilunate, 1 mm long, 1.75 mm wide, 3-veined, with the apical margin broadly rounded, thickened, with a transverse carina; **lip** purple, subquadrare, 0.6 mm long, 1 mm wide, 0.75 mm deep, concave below a protruding, shallowly sulcate bar, the apex broadly rounded, the dorum with a central, hemispherical callus flanked by a smaller calli on either side; the base truncate, hinged to the base of the column; **column** ca. 1 mm broad and long, the anther and stigmatic lobes apical.

Eponymy: Named in honor of Francisco “Pacho” Lopez, curator of orchids at Colomborquídeas, who discovered this species.

This slender, caespitose species is distinguished by one or two subflexuous racemes that eventually surpass narrow leaves. The dorsal sepal spreads about 180° from a synsepal that is concave near the apex. The petals are three-veined, and the apex of the lip is broadly rounded, the bar is protuberant, and a row of three calli is present on the dorum.

Stelis pachythrix Luer & R.Escobar, sp. nov. **TYPE:** COLOMBIA. Santander: W of Velez, road to Landázuri, 2150 m, 5 May 1984, C. Luer, J. Luer & R. Escobar 10114 (Holotype: MO). Fig. 36.

This species is characterized by an elongated rhizome; ramicauls with loose, tubular sheaths; a many-flowered inflorescence that far exceeds the leaf; broadly ovate, three-veined sepals with a sparse pubescence of long, thick, trichomes; round, three-veined petals; and a rounded lip with a small, central callus.

Plant medium in size, epiphytic, repent, the rhizome stout, to at least 15 cm long, 1–3 cm long between ramicauls. Ramicauls ascending, erect, 4–5 cm long, with a loose, tubular sheath from below the middle, and another sheath at the base. **Leaf** erect, coriaceous, elliptical, acute, 5–6 cm long, 0.8–1.1 cm wide in the dry state, cuneate below into a subpetiolate base. **Inflorescence** single; 12–14 cm long, the raceme erect, subcongested, distichous, many-flowered with several flowers open simultaneously; floral bracts oblique, acute, 2.5 mm long; pedicels 1.5 mm long; ovary 1.5 mm long; the peduncle 3–7 cm long, subtended by a spathe ca. 5 mm long, from a node at the apex of the ramicaul; flowers light yellow; **sepal** glabrous externally, with a sparse pubescence of thick trichomes within, mostly toward the margins, connate below the middle, 3-veined,
the dorsal sepal transversely ovate, broadly obtuse, 2 mm long, 2.5 mm wide, the lateral sepals broadly ovate, obtuse, subcircular, 2 mm long, 2 mm wide; petals thin, subcircular, broadly obtuse, narrowly thickened on the margin, shallowly concave, without a transverse carina, 1 mm long, 1 mm wide, 3-veined; lip subhemispherical, 0.75 mm long, 1 mm wide, 0.5 mm deep, shallowly concave below a round bar with an obscure glenion, the apex rounded, concave within a thin margin, the dorsum narrow, featureless, the base broadly truncate, connate to the base of the column; column stout, ca. 1 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Greek *pachythrix*, “thick hair,” referring to the pubescence.

This small, pendent species is characterized by a successively flowered raceme of relatively large, white, pubescent sepals and dark purple petals and lip; five-veined sepals; thick three-veined petals; and a rounded lip.

Stelis paradoxa Luer & R. Escobar, *sp. nov.* **TYPE:** COLOMBIA. Antioquia: Betania, Farallones, 2200 m, fl. in cult. by Marta and Oscar Robledo at La Ceja, 19 March 1989, C. Luer 14263 (Holotype: MO). Fig. 37.

This small, pendent species is characterized by a successively flowered raceme of relatively large, white, pubescent sepals and dark purple petals and lip; five-veined sepals; thick three-veined petals; and a rounded lip.

Plant small, epiphytic, pendent, repent, the rhizome stout, 1–2 cm long between ramicauls; roots slender. Ramicauls descending, relatively stout, 1–2 cm long, enclosed by a loose, tubular sheath and another loose sheath at the base. **Leaf** descending, coriaceous, elliptical, obtuse, 2–4 cm long, 1.5–1.8 mm wide, narrowed below to a subpetiolate base. **Inflorescence** single, pendent, 4–7 cm long, the raceme strict, lax, successively flowered with few, non-resupinate flowers open simultaneously; floral bracts oblique, acute, 3 mm long; pedicels 3–5 mm long; ovary 5–7 mm long; the peduncle 1–2 cm long, from a node near the abscission layer, with a spathe 1 cm long; **sepals** glabrous, the dorsal sepal purple with apex yellow, erect, narrowly obovate, obtuse to rounded at the apex, 8–10 mm long, 3 mm wide, 3-veined, connate basally 2 mm to the synsepal, the lateral sepals yellow, ovate, oblique, obtuse, with recurved tips. adherent to near the tip, 5–6 mm long, 4–6 mm wide, 3-veined; **petals** orange, transversely elliptical, concave, broadly rounded at the apex with the margin thick with numerous, irregular crystals, without a transverse carina, 0.75 mm long, 1 mm wide, 3-veined; lip orange, obscurely 3-lobed, 1.5 mm long, 0.5 mm wide, 0.5 mm deep, subquadrate in the basal third with rounded lateral lobes, constricted below the basal third into a narrowly ovate, acute, acuminate, protruding midlobe, the dorsum slightly convex, the base truncate, hinged to the base of the column; column semiterete, ca. 0.5 mm long and wide, the anther and the bilobed stigma apical.

Etymology: A lateral translation into Latin for “with thumbs up,” *pollicibus erectibus*, “with erect thumbs,” an allusion to the appearance of a column of numerous, erect dorsal sepals.

Paratype: COLOMBIA. Putumayo: between La Cocha and Sibundoy, 2700 m, 30 July–5 August 1978, C. Luer, J. R. Escobar et al. 3103 (Holotype: SEL).

This species is the king of the elongata clan, those repent species with a distinctive lip that appear to be variations of a common ancestor. *Stelis pollerecta* is distinguished by large flowers with erect, narrowly obovate dorsal sepals that are aligned in a row in a crowded raceme. The long, narrow dorsal sepal stands above the free but opposed lateral sepals creating a deep bucket-like synsepal; the petals are three-veined with a markedly rough margin, and the long, pointed lip is similar to that of the widely distributed and variable *Stelis elongata* Kunth.

Stelis pollerecta Luer & R. Escobar, *sp. nov.** TYPE: COLOMBIA. Huila: Páramo de Puracé, E of the pass, 3050 m, 14 November 1982, C. Luer & R. Escobar 8393 (Holotype: SEL) Fig. 38.

This large, repent species, related to *Stelis elongata* Kunth, is distinguished by a secund, simultaneously flowered raceme with proportionately long, erect, dorsal sepals, an inflated synsepal, and a similar, trilobed lip with a long-acuminate tip.

Plant large, epiphytic, repent, the rhizome stout, 1–2 cm long between ramicauls; roots slender. Ramicauls erect, 3–8 cm long, with a tubular sheath from below the middle third, and another 2–3 sheaths below and at the base. **Leaf** erect, coriaceous, elliptical, acute, 8–11 cm long, including a petiole 1.5–2 cm long, the blade 1–1.8 cm wide in the dry state, cuneate below to the petiole. **Inflorescence** solitary; 15–17 long, the raceme erect, secund, many-flowered, with many flowers produced simultaneously; floral bracts oblique, acute, acuminate, 5–7 mm long; pedicels 2 mm long; ovary 1.5–2 mm long; the peduncle 5–7 cm long, from a node near the abscission layer, with a spathe 1 cm long; **sepals** glabrous, the dorsal sepal purple with apex yellow, erect, narrowly obovate, obtuse to rounded at the apex, 8–10 mm long, 3 mm wide, 3-veined, connate basally 2 mm to the synsepal, the lateral sepals yellow, ovate, oblique, obtuse, with recurved tips. adherent to near the tip, 5–6 mm long, 4–6 mm wide, 3-veined; **petals** orange, transversely elliptical, concave, broadly rounded at the apex with the margin thick with numerous, irregular crystals, without a transverse carina, 0.75 mm long, 1 mm wide, 3-veined; lip orange, obscurely 3-lobed, 1.5 mm long, 0.5 mm wide, 0.5 mm deep, subquadrate in the basal third with rounded lateral lobes, constricted below the basal third into a narrowly ovate, acute, acuminate, protruding midlobe, the dorsum slightly convex, the base truncate, hinged to the base of the column; column semiterete, ca. 0.5 mm long and wide, the anther and the bilobed stigma apical.

Etymology: A literal translation into Latin for “with thumbs up,” *pollicibus erectibus*, “with erect thumbs,” an allusion to the appearance of a column of numerous, erect dorsal sepals.

Paratype: COLOMBIA. Putumayo: between La Cocha and Sibundoy, 2700 m, 30 July–5 August 1978, C. Luer, J. R. Escobar et al. 3103 (Holotype: SEL).

This species is the king of the elongata clan, those repent species with a distinctive lip that appear to be variations of a common ancestor. *Stelis pollerecta* is distinguished by large flowers with erect, narrowly obovate dorsal sepals that are aligned in a row in a crowded raceme. The long, narrow dorsal sepal stands above the free but opposed lateral sepals creating a deep bucket-like synsepal; the petals are three-veined with a markedly rough margin, and the long, pointed lip is similar to that of the widely distributed and variable *Stelis elongata* Kunth.

2016

LUER, STELIS (ORCHIDACEAE) OF COLOMBIA 215
Stelis prionota Luer & R. Escobar, sp. nov. TYPE: COLOMBIA. Antioquia: Cerro Padre Amaya, 2400 m, coll. by E. Acevedo, fl. in cult. at Colomboquídeas. 5 May 1993, C. Luer 16696 (Holotype: MO). Fig. 39.

This caespitose species is distinguished by a narrow, linear-elliptical leaf far surpassed by a crowded, distichous raceme with protruding floral bracts; three-veined sepals concave and connate in their basal thirds; three-veined petals, and a lip concave below a notched bar.

Plant medium to large, epiphytic, densely caespitose, roots slender. Ramicauls erect, slender, 5–9 cm long, with a loose, tubular sheath from near the middle, another sheath from above the base, and another at the base. Leaf erect, coriaceous, linear-elliptical, subacute, 10–12 cm long including a petiole ca. 1.5 cm long, the blade 0.8–1.2 cm wide in dry state, narrowly cuneate below into the petiole. Inflorescence single; to 25 cm long, the raceme erect, congested, strict, distichous, with many flowers open simultaneously; floral bracts oblique, acuminate, acute, 8 mm long below to 5 mm long toward the tip; pedicels 2–3 mm long; ovary 1 mm long; peduncle ca. 10 cm long, from a node near the apex of the ramicaul; sepals greenish-white, minutely pubescent, rigid, ovate, obtuse, concave and connate in basal third, 3-veined, the dorsal sepal 3 mm long, 3.5 mm wide, the lateral sepals 3 mm long, 4 mm wide; petals purple, transversely ovate, concave below the broadly obtuse, thickened and minutely verrucose apical margin, 1.25 mm long, 1.5 mm wide, 3-veined; lip purple, subhemispherical with the apex rounded, 1.8 mm long, 1.8 mm wide, 1.6 mm deep, concave and smooth below a thin, deeply notched bar, the dorsum smooth, connate to the base of the column; column stout, ca. 1 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Greek prionotos, “jagged like a saw,” referring to the floral bracts in the raceme.

Paratype: COLOMBIA. Putumayo: Valley of Sibundoy, Sibundoy, 2225–2300 m, 29 May 1946, R.E. Schultes & M. Villarreal 7685 (AMES), C. Luer illustr. 21958.

This caespitose species is distinguished by an elongated, distichous raceme that far surpasses narrow, linear-elliptical, subacute leaves. Acuminate floral bracts protrude on both sides beyond the flowers. The sepals are obtuse and connate in their basal thirds to create a cavity for the central apparatus. The petals are small and three-veined. The lip is subhemispherical and deeply concave below a transverse, notched bar.

This large, caespitose species is distinguished by long, distichous racemes with nutant flowers; ovate, subacute, pubescent sepals; three-veined petals with a right-angled apex; and a lip with a deep glenion, and a right-angled apex.

Plant large, epiphytic, densely caespitose; roots slender. Ramicauls erect, slender, 4–8 cm long, with a close tubular sheath above the middle and another 1–2 sheaths below and about the base. Leaf erect, coriaceous, elliptical, subacute, 7–12 cm long including a petiole 1.5 cm long, the blade 1.5–2 cm wide in dry state, cuneate below into the petiole. Inflorescence 2–3; 12–14 cm tall, the racemes erect, strict, subcongested, distichous, with many simultaneous, nutant flowers; floral bracts oblique, acute, 3 mm long; pedicels 2 mm long; ovary 1 mm long; the peduncle ca. 3 cm long, from a node near the apex of the ramicaul, with a slender spathe 8 mm long; flowers yellow; sepals pubescent, ovate, subacute, connate near the base, 3-veined, the dorsal sepal 3.5–4 mm long, 2 wide, the lateral sepals antorse, 3.5 mm long, 2 mm wide; petals transversely ovate to triangular, 0.6 mm long, 1 mm wide, 3-veined, concave, the apex...
subacut e or right-angled, with the margin thickened, with an
indistinct transverse carina; lip subquadrate, 0.8 mm long, 0.8
mm wide, 0.6 mm deep, shallowly concave below the
bar with a deep glenion, the apex subacute or right-angled,
the dorsum slightly and widely convex, the base truncate,
hinged to the base of the column; column clavate, ca. 0.8
mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Latin rectangularis, “with right
angles,” referring to the 90 degree angle of the tips of
the petals and lip.

This large, caespitose species is distinguished by two
or three long racemes of nutant flowers. The sepals are
pubescent with the lateral sepals antrorse. Most distinctive
are the right-angled apices of both petals and lip.

Stelis silvestris Luer & R. Escobar, *sp. nov.* TYPE:
COLOMBIA. Nariño: forest surrounding the crater lake, E
slope of Volcán Galeras, 3200 m, 21 January 1979, C. Luer,
J. Luer & R. Escobar 3706 (Holotype: SEL). Fig. 42.

This small, long-repent species is similar to *Stelis scansor*
Rchb.f., but differs with a very slender rhizome
with ramicauls spaced farther apart; an inflorescence twice
longer than an elliptical leaf; larger, nodding flowers; and a
lip with a single, central callus.

Plant small, epiphytic, scandent, long-repent, the
rhizome very slender, 2–3 cm between ramicauls; roots
slender, sparse. Ramicauls ascending, slender, 1.5–3 cm
long, enclosed by a 2 tubular sheaths and another at the base.
Leaf erect, coriaceous, elliptical, subacute to rounded at the
tip, 2–3.5 cm long including the petiole 0.5–0.7 cm long,
the blade 0.8–1 cm wide in the dry state, cuneate below into the
petiole. *Inflorescence* single; 5–10 cm long, the raceme
erect, lax, second, many-flowered with several, downward-
facing flowers open simultaneously; floral bracts oblique,
acute, 3 mm long; pedicels 3 mm long; ovary 1.5 mm long;
the peduncle 2.5–3 cm long, subtended by a spathe 3 mm
long, from a node below the apex of the ramicaul; flowers
purple; *sepals* short pubescent, ovate, subacute,
3-veined, connate below the middle, the dorsal sepal 2 mm
long, 2 mm wide, the lateral sepals 1.75 mm long, 2 mm
wide; *petals* transversely elliptical, 0.75 mm long, 1 mm
wide, 3-veined, concave, obtuse with the margin thickened,
without an obvious transverse callus; *lip* subquadrate, 1
mm long, 0.8 mm wide, 0.5 mm deep, connate below an
shallowly sulcate bar with a glenion, the apex subtruncate,
with a short, obtuse, triangular apiculum, the dorsum slightly
convex, minutely pubescent; the base truncate, hinged to the
base of the column; *column* ca. 1 mm broad and long, the
anther and stigmatic lobes apical.

Etymology: From the Latin *stipitatus*, “crowded
together,” referring to fasciculate ramicauls.

This tall, slender species is densely caespitose, the
slender ramicauls growing in a tight cluster. The acute,
elliptical leaves are exceeded by one or two densely many-
flowered racemes with small flowers. The sepals are shortly
pubescent, the petals are three-veined, and the lip is type A
with a small, obtuse apiculum and with the dorsum minutely
pubescent.

Stelis stipitata Luer & R. Escobar, *sp. nov.* TYPE:
COLOMBIA. Antioquia: NE of La Ceja, 2400 m, 29 April
Fig. 43.

This large species with long, slender ramicauls produced
in a dense fascicle is characterized by one or two congested,
small-flowered racemes that exceed the leaf; ovate, shortly
pubescent sepals; three-veined petals; and a subquadrate lip
with a small, obtuse apiculum at the truncate apex.

Plant large, epiphytic, densely caespitose; roots slender,
numerous. Ramicaul erect, slender, 7–14 cm long, produced
in tight clusters, with a close, tubular sheath from near
the middle and another 1–2 sheaths below and about the
base. *Leaf* erect, coriaceous, elliptical, acute, 6–10 cm long
including a petiole ca. 1 cm long, the blade 1.2–1.6 cm wide
in the dry state, cuneate below into the petiole. *Inflorescence*
1–2; 7–15 cm long, the racemes erect, strict, distichous,
densely and simultaneously many-flowered with many
flowers open simultaneously; floral bracts oblique, obtuse,
2 mm long; pedicels 1.5 mm long; ovary 1 mm long; the
peduncle 2–3 cm long, subtended by a slender spathe ca.
1 cm long, from a node below the apex of the ramicaul;
flowers purple; *sepals* shortly pubescent, ovate, subacute,
3-veined, connate below the middle, the dorsal sepal 2 mm
long, 2 mm wide, the lateral sepals 1.75 mm long, 2 mm
wide; *petals* transversely elliptical, 0.75 mm long, 1 mm
wide, 3-veined, concave, obtuse with the margin thickened,
without an obvious transverse callus; *lip* subquadrate, 1
mm long, 0.8 mm wide, 0.5 mm deep, connate below an
shallowly sulcate bar with a glenion, the apex subtruncate,
with a short, obtuse, triangular apiculum, the dorsum slightly
convex, minutely pubescent; the base truncate, hinged to the
base of the column; *column* ca. 1 mm broad and long, the
anther and stigmatic lobes apical.

Etymology: From the Latin *straminea*, “with right
angles,” referring to fasciculate ramicauls.

This tall, slender species is densely caespitose, the
slender ramicauls growing in a tight cluster. The acute,
elliptical leaves are exceeded by one or two densely many-
flowered racemes with small flowers. The sepals are shortly
pubescent, the petals are three-veined, and the lip is type A
with a small, obtuse apiculum and with the dorsum minutely
pubescent.

Stelis straminea Luer & R. Escobar, *sp. nov.* TYPE:
COLOMBIA. Cauca: Páramo de Las Delicias, 3380 m, 17
Fig. 44.

This species is characterized by proliferating,
stoloniferous ramicauls; elliptical leaves exceeded by a
multi-flowered raceme; ovate, obtuse sepals; single-veined
petals; and an obtuse, ovoid lip concave below a retuse,
fleshy bar.

Plant large, epiphytic, densely caespitose, producing
stolons, roots slender. Ramicauls erect, slender, 15–20 cm
below to 0–5 cm long above, with 1–2 close, tubular sheaths
below and at the base. *Leaf* erect, coriaceous, acute, narrowly
elliptical, 6–7 cm long including a petiole, 1.5 cm long, the
blade 1–1.3 cm wide in the dry state, cuneate below into the petiole. Inflorescence single; 8–12 cm long, the raceme erect, congested, distichous, many-flowered with many flowers open simultaneously; floral bracts oblique, acute 3 mm long; pedicels 2 mm long; ovary 1.5 mm long; the peduncle 3–4 cm long, subtended by a spathe 5–7 cm long, from a node below the apex of the rami cul; sepals yellow, brown toward the base, glabrous, ovate, obtuse, 3-veined, connate below the middle, 3-veined, the dorsal sepal 2.75 mm long, 2.75 mm wide, the lateral sepals 2.5 mm long, 2.3 mm wide; petals yellow, subcircular, thin, concave, 1 mm long, 1.1 mm wide, 1-veined, without a transverse carina; lip yellow, ovoid, obtuse, concave below a thick, shallowly cleft bar, the dorsum slightly convex, the base truncate, connate to the base of the column; column stout, ca. 1 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Latin *streamineus*, "like straw," referring to the bundles of proliferating rami cauls.

Paratypes: COLOMBIA. Cauca: Páramo de Las Delicias, 3380 m, 17 November 1982, C. Luer & R. Escobar 8463, 8479 (SEL).

This species has densely caespitose components as well as stolons, but mostly propagating rami cauls that sometimes accumulate into elongated clusters, like a bundle of straw. A raceme exceeds the leaf about twice the length; the sepals are ovate, obtuse and three-veined; and the petals are rounded and single-veined. The lip is ovoid and concave below a thick, succulate bar.

Stelis sublesta Luer & R. Escobar, *sp. nov.* TYPE: COLOMBIA. Putumayo: between La Cocha and Sibundoy, ca. 2700 m, 30 July 1978, C. Luer, J. Luer, R. Escobar et al 3085 (Holotype: SEL). Fig. 45.

This little species is characterized by an elongated, many-flowered raceme with a peduncle exceeding an elliptical leaf; ovate, obtuse, three-veined sepals; proportionally large, single-veined petals; and an obtuse, ovoid lip concave below a thick, succulate bar.

Plant small, epiphytic, densely caespitose; roots slender. Rami cauls erect, slender, 4–7 cm long, with a close, tubular sheath from below the middle and another 1–2 sheaths below and at the base. Leaf erect, coriaceous, elliptical, acute, 7–8 cm long including a petiole 1.5 mm long, the blade 1–1.3 cm wide in the dry state, cuneate below into the petiole. Inflorescence single; 7–8 cm long, the raceme erect, congested, many-flowered in two rows, with many flowers open simultaneously; floral bracts oblique, inflated, obtuse, 3 mm long, 2 mm wide; pedicels 2 mm long; ovary 1 mm long; the peduncle ca. 2 cm long, subtended by a spathe 5–7 mm long, from a node below the apex of the rami cul; sepals glabrous, purple externally, dull gray within, broadly ovate, obtuse, 3-veined, connate to near the middle, the dorsal sepal 3.5 mm long, 3.3 mm wide, the lateral sepals 2.5 mm long, 2.2 mm wide; petals bright purple, transversely elliptical, 0.8 mm long, 1.4 mm wide, 3-veined, thin, concave, the apex broadly rounded with a narrowly thickened margin, without a transverse carina; lip ovoid, 0.6 mm long, 0.8 mm wide. 0.5 mm deep, concave below a thick, bigibbous bar, the apex rounded, the base truncate, connate to the base of the column; column stout, ca. 0.8 mm long and wide, the anther and the stigmatic lobes apical.

Etymology: From the Latin *tauroculus*, "a bull’s eye," referring to the bright color of the central apparatus, probably the target of a pollinator.

This small, caespitose species is distinguished by the bright purple central apparatus in the center of a dull gray flower. The flowers are produced in two crowded, opposite-facing rows in a raceme that equals an elliptical leaf; the sepals are broadly obtuse; the petals are three-veined; and the bar of the lip is bigibbous without a glenion.

This immense, caespitose species is similar to the Ecuadorian *Stelis maxima* Lindl., but with leaves about twice as long; ramicauls not prolific; and thick, five-veined petals.

Plant very large, epiphytic, densely caespitose, roots slender. Ramicauls erect, stout, 10–28 cm long, with a tubular sheath from below the middle and 1–2 sheaths below and at the base. *Leaf* erect, coriaceous, elliptical, subacute, petiolate, 15–17 cm long including a petiole 3 cm long, the blade 2.5–3.5 cm wide in dry state, cuneate below into the petiole. *Inflorescence* single; 25–30 cm long, the raceme erect, strict, lax, distichous, many-flowered; floral bracts oblique, acute, more or less undulating, 10 mm long to 5 mm long toward the tip; pedicels 4–5 mm long; ovary 4 mm long; the peduncle ca. 10 cm long, from a node below the apex of the ramicaul with a spathe 1.5 cm long; *sepal* light purple, glabrous, the dorsal sepal ovate-triangular, acute, 11-veined, connate basally, 11 mm long, 9 mm wide, the lateral sepals connate to the tip into an ovoid, concave synsepal, 9 mm long, 10 mm wide unexpanded, 12-veined; *petals* purple, transversely elliptical, the apical margin thick, the apex broadly rounded, concave below a transverse carina, 1.5 mm long, 2.5 mm wide, 5-veined; *lip* purple, glabrous, the dorsal sepal ovate-triangular, acute, 11-veined, connate basally, 11 mm long, 9 mm wide, the lateral sepals connate to the tip into an ovoid, concave synsepal, 9 mm long, 10 mm wide unexpanded, 12-veined; *sepal* purple, transversely elliptical, the apical margin thick, the apex broadly rounded, concave below a transverse carina, 1.5 mm long, 2.5 mm wide, 5-veined; *lip* purple, subquadrate, 1 mm long, 1.5 mm wide, 1 mm deep, concave below the bar with a narrow glenion, the apex rounded with thickened margin, the dorsum convex, the base truncate, hinged to the base of the column; *column* clavate, 1.5 mm wide and long, the anther and the bilobed stigma apical.

Eponymy: From the Greek *titanicos*, “belonging to the Titans,” referring to the huge size.

This robust species, one of the largest in the genus, is distinguished by long, stout, nonprolific ramicauls and a large, elliptical, petiolate leaf, often accompanied by fragments of older ramicauls. The long, more or less undulating floral bracts are similar to those of *Stelis purpurea* (Ruiz & Pav.) Willd. Except for the petals, the flowers are similar to those of *Stelis maxima* Lindl. The veins of the dorsal sepal of *S. maxima* originate at the base, while those of *S. titanica* originate by branching. Instead of three veins in the petals, five, strong veins are present.

Stelis turulosa Luer & R. Escobar, *sp. nov.* **TYPE:** COLOMBIA. Antioquia: Yarumal, near Yarumalito, NE of Santa Rosa, 2350 m, 15 May 1985, C. Luer, R. Escobar & E. Valencia 11390 (Holotype: MO), C. Luer illustr. 16853. Fig. 49.

This medium-sized, caespitose species is characterized one or two racemes slightly shorter than an acute, narrowly elliptical leaf; broadly ovate, three-veined, minutely pubescent sepals; three-veined petals; and an ovoid, projecting callus on the dorsum of the lip.

Plant medium-sized, epiphytic densely caespitose, roots slender. Ramicauls erect, slender, 2.5 cm long, with a tubular sheath from below the middle third, and another sheath below and at the base. *Leaf* erect, coriaceous, elliptical, acute, 6.5 cm long including a petiole 1 cm long, the blade 1.2 cm wide in dry state, cuneate below into the petiole. *Inflorescence* single; 9 cm long, the raceme erect, distichous, congested, mostly simultaneously many-flowered; floral bracts oblique, acute, 1.5 mm long; pedicels 1.5 mm long; ovary 1 mm long; the peduncle ca. 3 cm long, from a node below the abscission layer; *sepal* light yellow, minutely short-pubescent, expanded, transversely ovate, or subcircular, broadly obtuse, three-veined, connate in basal third, the dorsal sepal 2.5 mm long, 3.5 mm wide, the lateral sepals 2.25 mm long, 3 mm wide; *petals* yellow, transversely ovate, concave, the broadly obtuse apex thickened, 1.2 mm long, 1.8 mm wide, 3-veined; *lip* yellow with purple margin, type C, subquadrate, with apex rounded, 0.8 mm wide, 0.6 mm long, 0.6 mm deep, shallowly concave within the margins surrounding an elevated, rounded callus that begins at the base, then curves forward and downward to within the apex, the base hinged to the base of the column; *column* clavate, ca. 0.8 mm wide and long, the anther and stigmatic lobes apical.

Etymology: From the Latin *trollius*, “a little, projecting knob,” referring to the callus on the dorsum of the lip.

This caespitose species is characterized by very slender ramicauls with acute, narrow, petiolate leaves and one or two racemes nearly as long. The sepals and petals are three-veined. The lip is a modified type A with an ovoid callus that extends from the base to projecting over the bar.

Stelis trifoliacea Luer & R. Escobar, *sp. nov.* **TYPE:** COLOMBIA. Chocó: Alto de Baudo, 400 m, fl. in cult. by A. de Wilde above Pereira, 15 May 1993, A. de Wilde 3877 (Holotype: MO), C. Luer illustr. 16853. Fig. 49.

This small, caespitose species bears a congested raceme of flowers with three subcircular, three-veined sepals resembling a clover; three-veined petals; and a lip with a rounded callus curving from the base to the apex.

Plant small, epiphytic, densely caespitose; roots slender. Ramicauls erect, slender, 2.5 cm long, with a tubular sheath from below the middle third, and another sheath below and at the base. *Leaf* erect, coriaceous, elliptical, acute, 6.5 cm long including a petiole 1 cm long, the blade 1.2 cm wide in dry state, cuneate below into the petiole. *Inflorescence* single; 9 cm long, the raceme erect, distichous, congested, mostly simultaneously many-flowered; floral bracts oblique, acute, 1.5 mm long; pedicels 1.5 mm long; ovary 1 mm long; the peduncle ca. 3 cm long, from a node below the abscission layer; *sepal* light yellow, minutely short-pubescent, expanded, transversely ovate, or subcircular, broadly obtuse, three-veined, connate in basal third, the dorsal sepal 2.5 mm long, 3.5 mm wide, the lateral sepals 2.25 mm long, 3 mm wide; *petals* yellow, transversely ovate, concave, the broadly obtuse apex thickened, 1.2 mm long, 1.8 mm wide, 3-veined; *lip* yellow with purple margin, type C, subquadrate, with apex rounded, 0.8 mm wide, 0.6 mm long, 0.6 mm deep, shallowly concave within the margins surrounding an elevated, rounded callus that begins at the base, then curves forward and downward to within the apex, the base hinged to the base of the column; *column* clavate, ca. 0.8 mm wide and long, the anther and stigmatic lobes apical.

Etymology: From the Latin *trifolius*, “like a clover, or a trifolium,” referring to the three, subcircular sepals.

This small, densely caespitose species occurs at a low altitude in western, coastal Colombia. It is characterized by an acute, elliptical leaf surpassed by a congested, many-
flowered raceme of flowers with rounded sepals, reminiscent of the three leaves of clover. The lip is most distinctive with a rounded, elevated callus (a modified bar) that extends from the base and curving forward and downward to the apex, a type C similar to that of Stelis argentata Lindl., but without an apiculum.

Stelis trochophora Luer & R. Escobar, sp. nov. TYPE: COLOMBIA. Santander: Bucaramanga, between Bucaramanga and Berlin, 2800 m, 27 April 1982, C. Luer, J. Luer & R. Escobar 7583 (Holotype: SEL). Fig. 50.

This densely caespitose species with ovate, minutely pubescent sepals is distinguished by a hemispherical callus on the anterior surface of the lip.

Plant medium to large, epiphytic, densely ascending-caespitose, roots slender. Ramicauls erect, slender, 6–12 cm long, with a tubular sheath on the middle third, and another sheath below and at the base. Leaf erect, coriaceous, elliptical, acute, 8–11 cm long including a petiole 1.5 cm long, the blade 1.5–2.5 cm wide in the dry state, cuneate below into the petiole. Inflorescence 10–12 cm long, the raceme erect or arching, secund, mostly simultaneously many-flowered, the peduncle ca. 3 cm long, from a node below the abscission layer; floral bracts dilated, obtuse, 2 mm long, 2 mm wide; pedicels 1 mm long; ovary 1 mm long; sepals light green, suffused with purple along the veins, minutely short-pubescent, expanded, ovate, slightly convex, 3-veined, connate below the middle, 4 mm long, 4 mm wide, the dorsal sepal acute with the tip rounded, the lateral sepals obtuse; petals green, transversely ovate, concave, the broadly obtuse apex thickened, 1 mm long, 1.5 mm wide, 3-veined; lip green, subquadrate, 1 mm wide, 0.75 mm long, 0.5 mm deep, concave within the rounded apex, the bar elevated, shallowly channeled, with a spherical callus on the anterior surface, the dorsal sepal thick, obtuse to the base of the column; column stout, ca. 1 mm wide and long, the anther and stigmatic lobes apical.

Etymology: From the Greek trochophorus, “ball bearing,” referring to the callus of the lip.

This densely caespitose-ascending species is characterized by a sublax raceme that exceeds a petiolate leaf, The acute dorsal sepal is longer than the obtuse lateral sepals. The petals are three-veined. The lip is type A with a bar shallowly cleft through the dorsum to a pubescent base.

Stelis uberus Luer & R. Escobar, sp. nov. TYPE: COLOMBIA. Santander: Bucaramanga, between Bucaramanga and Berlin, 2800 m, 27 April 1982, C. Luer, J. Luer & R. Escobar 7582 (Holotype: SEL). Fig. 52.

This tall, caespitose species is distinguished by a long, secund, successively flowering raceme of flowers that commonly bear capsules; pubescent, three-veined sepals; single-veined petals; and an obtuse lip with a cleft bar.

Plant medium to large, epiphytic, densely caespitose; roots slender. Ramicauls erect, slender, 4–10 cm long, with a tubular sheath from below the middle, and 1–2 other sheaths below and at the base. Leaf erect, coriaceous, narrowly elliptical, acute, 5–7 cm long, including a petiole 1.5–2 cm long, the blade 0.8–1.3 cm wide in the dry state, narrowly cuneate below into the petiole. Inflorescence single; 9-20 cm long, the raceme erect, strict, secund, nearly simultaneously many-flowered, with most ovaries swollen or bearing capsules; floral bracts light yellow-green; sepals usually not expanded, pubescent, broadly ovate to subcircular, broadly obtuse to rounded at the apex, 3-veined, connate below the middle, the dorsal sepal 1.75 mm long, 1.5 mm wide, the lateral sepals 1.5 mm long, 1.5 mm wide; petals thin, transversely oblong, concave, slightly thickened on the margin of a rounded apex, 0.75 mm long, 1 mm wide, 1-veined; lip subquadrate, type A, 0.8 mm long, 1 mm wide, 0.7 mm deep, shallowly concave below a thick, cleft bar, the apex rounded with a narrow margin, the dorsum slightly convex, minutely pubescent, the base truncate, hinged to the base of a thickened, obtuse bar.

Eponymy: Named for Shigenobu Tsubota, proprietor of Ran Orchids, Pereira, who cultivated this species.
the column; column clavate, ca. 0.6 mm wide and long, the anther and the bilobed stigma apical.

Etymology: From the Latin *uberis*, “fertile,” referring to the abundant production of capsules.

Additional specimen examined: COLOMBIA. Santander: Bucaramanga, terrestrial on the road embankment E of Bucaramanga, 2370 m, 3 November 1981, *C. Luer & R. Escobar 6553* (Holotype: SEL).

This tall, slender, caespitose species is characterized by a long, secund, successively many-flowered raceme with most flowers developing capsules. Very few flowers remain open between buds and closed flowers with swollen ovaries. The sepals are pubescent and three-veined; the petals are single-veined; and the lip is type A with a round apex, a cleft bar, and a minutely pubescent dorsum.

Literature Cited

SALVIA ALI-ASKARYI (LAMIACEAE), A NEW SPECIES FROM KURDISTAN, IRAQ

SAMAN A. AHMAD1,2

Abstract. Salvia ali-askaryi (Lamiaceae), a new species from Kurdistan Iraq, is described and illustrated, and its distinguishing characters are discussed. It is easily separated from S. microstegia by having broadly ovate or elliptic-oblong (vs. ovate to oblong), irregularly serrate or dentate (vs. obtusely lobed) leaves, 12–23– (vs. 4–6-)flowered verticillasters, shortly bilobed or emarginate (vs. shortly tridentate, and median tooth much shorter) upper lip, and globose (vs. ovoid) nutlets 3–4 mm in diameter (vs. 3 × 2.5 mm). It differs from S. argentea by having usually eglanular lanate (vs. not lanate) lower stems, irregularly serrate or dentate (vs. irregularly erose) leaf margins, and white (vs. white, with a violet tinged) upper corolla lip.

Keywords: Lamiaceae, Salvia, Azmar-Goizha Mts., Kurdistan, Iraq

During the past two years, the Kurdistan Botanical Foundation conducted extensive floristic study on the Azmar-Goizha Mountain (Kurdistan, Iraq). This mountain, which is part of the extensive Zagros Mountain Range, overlooking Sulaimani City, occupies an area of about 250 km² between 35°29′ to 35°42′N and 45°26′ to 46°33′E.

During recent studies in Hawraman region (Ahmad, 2013a), the author discovered four new species to science (Ahmad, 2013b–c, 2014a–b) and 18 new to the flora of Iraq (Ahmad, 2013d). The present botanical survey of the Azmar-Goizha Mountain also yielded several additional novelties and additions to the flora of Iraq, including the following species of Salvia L.

Salvia ali-askaryi S.A.Ahmad, sp. nov. TYPE: IRAQ. Kurdistan, Sulaimani Province, Azmar Mt., near Harwta forest station, eroded places, sandy soil, pine forest, 25–35% slope with sun exposure SE to NW, 1238 m, 35°35′47″N, 45°28′36″E, 15 May 2015, S. A. Ahmad, A. Hama & S. Babarasul 14–818 (Holotype: KBFH). Fig. 1.

The new species is easily separated from S. microstegia Boiss. & Balansa by having broadly ovate or elliptic-oblong (vs. ovate to oblong), irregularly serrate or dentate (vs. obtusely lobed) leaves, 12–23– (vs. 4–6-)flowered verticillasters, broadly cordate (vs. broadly ovate) bracts 15–21 × 10–15 mm (vs. 9–17 × 8–14), broadly campanulate or campanulate-infundibular (vs. campanulate) calyx, shortly bilobed or emarginate (vs. shortly tridentate, and median tooth much shorter) upper lip, and globose (vs. ovoid) nutlets 3–4 mm in diameter (vs. 3 × 2.5 mm). From S. argentea L., the new species differs by having usually eglandular lanate (vs. not lanate) lower stems, irregularly serrate or dentate (vs. irregularly erose) leaf margins, white (vs. white with a violet-tinged) upper corolla lip.

Herb perennial with a woody rootstock. Stems erect, 35–50 cm, densely pilose-villous glandular, often eglandular lanate below. Leaves mostly basally, broadly ovate, elliptic-oblong, 15–27 × 8–20 cm, adaxial surface densely pilose-villous, abaxial surface scattered pilose, irregularly serrate or dentate; petiole 1–8.5 cm. Inflorescence panicle, sometimes widely spreading; verticillasters 12–23-flowered, very dense; bracts broadly cordate, 1.5–2.1 × 1–1.5 cm, sessile, dense short glandular hairy; pedicels 1–2 mm. Calyx broadly campanulate or campanulate-infundibular, 8–10 × 5–7 mm, to 12–15 × 9–11 mm in fruit, with widely diverging lips, densely villous, glandular; corolla white, 18–23 mm; tube 7.5–9.5 mm, ventricose, squamulate; upper lip compressed, shortly bilobed or emarginate, falcate, capitate glandular hairy; stamens squamulate; filaments ca. 4 mm; connective 16–18 mm; anthers yellow, 24 × 0.7–0.9 mm; style 23–24 mm, stigma lobes 12 mm. Nutlets globose, pale green, 3–4 mm in diameter, villous, glandular.

Eponymy: This novelty is named after Dr. Ali A. Askary in recognition of his extensive field collection and research in the field of medicinal botany of Iraq.

Distribution: Known only form Azmar Mt., where it is restricted to a small area near Harwta forest station, where it grows on sandy soil in eroded places of a pine forest on 25–35% slope with sun exposure SE to NW.

Additional specimens examined: Goizha Mt., 1500 m, 35°34′56″N, 45°29′03″E, 21 May 2015, S. A. Ahmad, A. Hama, R. Ali & S. Babarasul 15-1202 (KBFH); Azmar Mt., 1601 m, 35°34′41″N, 45°29′38″E, 07 June 2014, S. A. Ahmad, A. Hama, R. Ali & S. Babarasul 14-1725 (KBFH); Azmar Mt., 1652 m, 35°34′55″N, 45°29′43″E, 01 June 2015, S. A. Ahmad, A. Hama, R. Ali, S. Babarasul & S. R. Fayaq 15-1150 (KBFH).

IUCN Red List Category: Salvia ali-askaryi is extremely rare; its IUCN Red List category (IUCN, 2001) remains uncertain and is currently assessed as Data Deficient (DD).

Salvia ali-askaryi, is somewhat related to the Irano-turanian S. microstegia. and to S. argentea of S. Europe, N.W. Africa, and Mediterranean Region. From the former, it differs by having broadly ovate or elliptic-oblong (vs. ovate to oblong), irregularly serrate or dentate (vs. obtusely lobed) leaves, 12–23– (vs. 4–6-)flowered verticillasters, broadly villous, abaxial surface scattered pilose, irregularly serrate or dentate; petiole 1–8.5 cm. Inflorescence panicle, sometimes widely spreading; verticillasters 12–23-flowered, very dense; bracts broadly cordate, 1.5–2.1 × 1–1.5 cm, sessile, dense short glandular hairy; pedicels 1–2 mm. Calyx broadly campanulate or campanulate-infundibular, 8–10 × 5–7 mm, to 12–15 × 9–11 mm in fruit, with widely diverging lips, densely villous, glandular; corolla white, 18–23 mm; tube 7.5–9.5 mm, ventricose, squamulate; upper lip compressed, shortly bilobed or emarginate, falcate, capitate glandular hairy; stamens squamulate; filaments ca. 4 mm; connective 16–18 mm; anthers yellow, 24 × 0.7–0.9 mm; style 23–24 mm, stigma lobes 12 mm. Nutlets globose, pale green, 3–4 mm in diameter, villous, glandular.

Eponymy: This novelty is named after Dr. Ali A. Askary in recognition of his extensive field collection and research in the field of medicinal botany of Iraq.

Distribution: Known only form Azmar Mt., where it is restricted to a small area near Harwta forest station, where it grows on sandy soil in eroded places of a pine forest on 25–35% slope with sun exposure SE to NW.

Additional specimens examined: Goizha Mt., 1500 m, 35°34′56″N, 45°29′03″E, 21 May 2015, S. A. Ahmad, A. Hama, R. Ali & S. Babarasul 15-1202 (KBFH); Azmar Mt., 1601 m, 35°34′41″N, 45°29′38″E, 07 June 2014, S. A. Ahmad, A. Hama, R. Ali & S. Babarasul 14-1725 (KBFH); Azmar Mt., 1652 m, 35°34′55″N, 45°29′43″E, 01 June 2015, S. A. Ahmad, A. Hama, R. Ali, S. Babarasul & S. R. Fayaq 15-1150 (KBFH).

IUCN Red List Category: Salvia ali-askaryi is extremely rare; its IUCN Red List category (IUCN, 2001) remains uncertain and is currently assessed as Data Deficient (DD).

Salvia ali-askaryi, is somewhat related to the Irano-turanian S. microstegia. and to S. argentea of S. Europe, N.W. Africa, and Mediterranean Region. From the former, it differs by having broadly ovate or elliptic-oblong (vs. ovate to oblong), irregularly serrate or dentate (vs. obtusely lobed) leaves, 12–23– (vs. 4–6-)flowered verticillasters, broadly
Figure 1. Salvia ali-askaryi S.A. Ahmad. A, plant; B, part of inflorescence; C, flower; D, calyx; E, corolla; F, nutlet. Scales: A = 5 cm; B–E = 1 cm; F = 2 mm. Photographs by Saman A. Ahmad, based on the collection: Azmar Mt., 1238 m, 35°35'47"N, 45°28'36"E, 15 May 2015, S. A. Ahmad, A. Hama & S. Babarasul 14–818 (KBFH).
cordate (vs. broadly ovate) bracts 15–21 × 10–15 mm (vs. 9-17 × 8–14), broadly campanulate or campanulate-infundibular (vs. campanulate) calyx, shortly bilobed or emarginate (vs. shortly tridentate, and median tooth much shorter) upper lip, and globose (vs. ovoid) nutlets 3–4 mm in diameter (vs. 3 × 2.5 mm). From S. argentea, the new species differs by having usually eglandular lanate (vs. not lanate) lower stems, irregularly serrate or dentate (vs. irregularly erose) leaf margins, white (vs. white with a violet tinged) upper corolla lip.

LITERATURE CITED

Abstract. Literature and herbarium studies of various orchid taxa that occur in the New World leads to the recognition of four new species, epitypification, lectotypification, and synonymisation of some neglected names, and the transfer of three names. Furthermore, reviews are presented on the synonymy and identity of the red-orange flowered Fernandezia species in Colombia and Venezuela, and the circumscription of Odontorrhynchus chilensis in Chile. The new species proposed are Aspidogyne jussariensis, Liparis vasquezii, L. yunanchaegae, and Microchilus tunquianus; new combinations are Bulbophyllum pinelianum, Maxillaria humilis, and Microstylis section Chrysanthera; new lectotypifications and synonymy are Epidendrum acinacifolium (= Tolunnia variegata), E. calcaratum (= Ionopsis atricularioides), E. minimum (= Polystachya foliosa), and E. obtusifolium (= E. nocturnum); Polystachya eustinctoria (= P. concreta) is neutypified; new synonyms are Centropetalum lanceolatum (= Fernandezia sanguinea), Fernandezia aurantiaca, F. ortiziana (both = F. myrtillus), Fernandezia tica (= F. sanguinea), Gomesa stricta (= Pleurothallis quadrifida), Nasonia hartwegii (= Fernandezia myrtillus), Odontorrhynchus domeykoanus, O. erosus, O. variabilis (all = O. chilensis), and Pachyphyllum favosifolium (= Fernandezia sanguinea).

Keywords: Neotropics, new orchids, synonymy, typification

This paper came about partly through research on the Brazilian orchids described by J. M. C. Vellozo (1831–1881) and the incidental encounters with various names not accounted for in the literature. Another part arose from preliminary studies of the genus Fernandezia Ruiz & Pavon, where great confusion was found among the identities of the larger, orange-red flowered taxa in Colombia and Venezuela. Still another component arose from an effort to continue studies of the genus Gavilea Poepp., which led to a check of undetermined specimens in the related genus Chloraea Lindl., where there was found a Chilean collection of Odontorrhynchus Correa, and thus an examination of the circumscription of O. chilensis (A. Rich.) Garay. The new taxa proposed in Aspidogyne Garay and Liparis L.C. Rich. are of course a continuation of previous work (e.g., Ormerod 2013a, b) on those two genera and their relatives.

Another source of inspiration was Ackerman’s (2014) Orchid Flora of the Greater Antilles. This publication is the most comprehensive treatment of the orchids of that region, and will likely remain so for a long time to come. As such it will be a very influential work and one that will be readily followed by its users. A number of orchid names absent from Ackerman’s account are here lectotypified and synonymised.

Aspidogyne Garay

In the broad sense (including Ligeophila Garay, Platythelys Garay, Rhamphorrhynchus Garay, and Stephanothelys Garay) this is a genus of about 71 species distributed from the southeastern United States of America to Argentina. Among the neotropical Goodyerinae it may be recognised by the entire (vs. bifid) rostellum that ruptures or breaks off apically when the pollinarium is removed. Ackerman (2014) has treated the nomen nudum Satyrium latifolium L. [basis for name: JAMAICA. Brown s.n. (LINN 1055.6)] as a synonym of Microchilus plantagineus (L.) D. Dietr. based purely on its leaf width. However I have examined the actual specimen and find it is unequivocally Aspidogyne querceticola (Lindl.) Meneguzzo (see Ormerod 2013b for synonymy).

The new taxon described below was found among material collected for the Flora of Bahia project. Currently Brazil has about 24 species of Aspidogyne but only five of these belong to a small subset centered around A. argentea (Vellozo) Garay, to which the novelty is also a member. This group often has leaves with colored reticulation, sometimes with a pale to bright white median band, and flowers with one to three wine-red stripes on the sepals and petals

Aspidogyne jussariensis Ormerod, sp. nov. TYPE: BRAZIL. Bahia: Jussari. RPPN Serra do Teimoso, Jussari to Pumila road, c. 7.5 km from Jussari, branch on the left, entry to Fazenda do Teimoso, 21 August 2003, P. Fiaschi, S.C. Sant’A&A & J.L. Paixao 1580 (Holotype: AMES). Fig. 1.

Affinis A. metallescens (Barb. Rodr.) Garay sed lobis lateralibus labello evolutis (vs. absentis) et epichilo late unguiculatis, subparduratis (vs. sessilis et rectangularis) differt.

Rhzime creeping, terete, rooting at nodes, to 85 mm long, 1–2 mm thick; internodes 12–21 mm long. Stem erect, terete, 3–4 leaved in upper half, 32–72 mm long, c. 1.5 mm thick; internodes 9–21 mm long. Leaves obliquely ovate, acute to subacuminate, above strongly discolored with obscure green variegation [pale white reticulation was also observed when checked with a microscope], glaucous below, 21–48 mm long, 17–26 mm wide; petiole and sheath 4–13 mm long. Inflorescence terminal, pubescent, immature, 8–10 cm long; peduncle 60–80 mm long; sheathing bracts 6–7,
Bulbophyllum Thouars

A genus of about 2200 pantropical species, with most in southeast Asia and Malesia. In the New World about 62 species (Smidt et al. 2011) have been recorded. The orchid genus *Pachyrhachis* A. Rich. has been overlooked in all accounts of the Brazilian flora. Analysis of the generic and specific description provided by Achille Richard clearly shows the plant is a species of *Bulbophyllum*, to which genus it is here transferred.

This genus is confined to the New World and comprises about 2000 species. In the 1700’s nearly all epiphytic orchids were placed in *Epidendrum*. The name *E. obtusifolium* would seem to be unidentifiable because it is a composite of an *Epidendrum* plant and flowers of another, possibly non-orchidaceous entity. I here suggest that the vegetative element represents *E. nocturnum* Jacq., and that the floral element can be considered a construct.

Lectotype (here designated): t.180, f. 2 (vegetative element only, excluding buds and flowers) in Plumer, Pl. Amer.: 175, 1758, as “*Helleborine amplissimo flore vatio*,” based on a plant of unknown origin (possibly Haiti).

Distribution: United States of America (Florida); Caribbean Islands; Mesoamerica; South America (to Brazil and Bolivia).

The stout stem and short, elliptic, obtuse leaves depicted for *E. obtusifolium* occur in some specimens (three such examples are cited above) seen of *E. nocturnum*. Furthermore the short, fractiflex pseudoterminal inflorescence of *E. obtusifolium* is identical to that of *E. nocturnum*. The “flowers” of *E. obtusifolium* should be considered either a partly or wholly fanciful construct, as these do match any other known Caribbean plant.

Ackerman (2014) provides a list of the nomenclatural synonyms of *E. nocturnum* and cites Ames, Hubbard, and Schweinfurth (1936) as lectotypifying that name. However there is no lectotypification provided in the place cited.

Fernandezia Ruiz & Pavon

When treated in the traditional sense, this is a genus of six or seven species, distributed from Bolivia to Costa Rica. Recently however Chase and Whitten (2011), using molecular data, expanded *Fernandezia* to include *Pachyphyllum* Kunth and *Raycadenco* Dodson. They argued that *Fernandezia* and *Pachyphyllum* are interdigitated, and that shifts from larger, brightly colored (orange to red) flowers to smaller whitish to greenish flowers occurred a number of times. The molecular data supporting their statements was published by Neubig et al. (2012). I am not, however, prepared to accept

Distribution: Brazil.

Study of the protologue of this plant indicates that it is an earlier name for *B. granulosum* Barb. Rodr., however since the holotype has not yet been located it is perhaps somewhat premature to make a formal reduction of the latter.
Raycadenco within a broad Fernandezia, and believe it is better treated as a sister genus to Fernandezia, as the authors themselves intimated. An alternative view was proposed by Kolanowska and Szlachetko (2014), who whilst accepting Fernandezia, Pachyphyllum and Raycadenco as separate genera, also recognised Orchidotypus Kraenzl. and a new genus Valdiviesoa Szlach. & Kolanowska (Type: Pachyphyllum debedoutii P. Ortiz).

I have however preferred to adopt an expanded Fernandezia (including Orchidotypus, Pachyphyllum, and Valdiviesoa), thus resulting in a genus of about 50 species distributed from Mexico to Bolivia. Recent studies suggest at least another 40 taxa require description, with many novelties found in Bolivia and Peru. The plants are generally small monopodial epiphytes with flowers that vary from comparatively large and brightly coloured in shades of red to orange, to white and greenish, tiny flowers. A review of the large flowered (sepsals 6 mm or more long) species of Fernandezia in Colombia and Venezuela reveals that there are so far only two species, rather than the five reported by Kolanowska and Szlachetko (2013). Revision of the smaller flowered species that were previously included in Pachyphyllum is however a much more difficult task.

One final problem regards the typification of Fernandezia. It has been completely overlooked that when Ruiz and Pavon (1794) established the genus, they validly described a single species, F. laxa. This taxon was the only orchid species described by them in 1794, whilst all the other taxa were published in 1798. This taxon, F. laxa, is thus the nomenclatural type of Fernandezia. Therefore the choice by Dunsterville and Garay (1972) of F. subbiflora Ruiz & Pavon as lectotype of the genus is superfluous and must be rejected. Fernandezia laxa is a species of Dichaea, an illustration of the type can be found in Pupulin (2012). It therefore will be necessary to propose conservation of the type of Fernandezia otherwise the genus will likely be rejected if a choice has to be made against its junior synonym Dichaea Lindl. (an uncontroversial, stable name), furthermore the genus Pachyphyllum would have to be expanded to cover the previous broad concept of Fernandezia. For the time being I use Fernandezia in the wide sense of recent authors, pending its conservation.

KEY TO LARGE FLOWERED SPECIES OF FERNANDEZIA IN COLOMBIA AND VENEZUELA

1a. Leaves thin, flat. Labellum with a concave base less than one third of total length; callus with a linear base diverging apically into two thin lamellate keels ... F. myrtillus

1b. Leaves thick, fleshy, canaliculate to flat. Labellum with a concave base about half of total length; callus somewhat rectangular-subpandurate, of two thickly lamellate keels ... F. sanguinea

TYPE: COLOMBIA. Nariño: woods near Pasto, September 1845, W. Jameson 442 (Holotype: W-R 19244, image seen; Isotypes: BM, G, 2 sheets; K, images seen). Fig. 2.

TYPE: COLOMBIA. Cauc: between Huamiba and Pituyo, T. Hartweg 1416 (Holotype: W-R 1921, 19242, images seen; Isotypes: BM, E, G, K, 2 sheets, K-L, P, 2 sheets, images seen).

Centropetalum hartwegii (Rchb.f.) Kraenzl., in Engl., Pflanzenr. IV , 50, 83: 30, 1923.

Fernandezia aurantiaca Senghas, J. Orchideenfr. 10, 3: 258, 2003 syn. nov.

TYPE: ECUADOR. Without locality or collector, cult. Kurpfalz Bot. Gard., Orch.-985 (Holotype: HEID, not seen).

TYPE: COLOMBIA. Antioquia: Municipio Bello, Corregimiento San Felix, Alto de las Baldias, 3150 m, 2 October 2004, Estudiantes Herbario MEDEL 459, lower left hand plant (Holotype: MEDEL, not seen).

Distribution: Ecuador; Colombia; Venezuela.

Epiphytic herb. Stems erect to pendulous, simple to occasionally branching, leafy near apex to throughout, 4.5–11.0 cm long. Leaves oblanceolate to obovate, apiculate, thinly fleshy, green to silyver green, occasionally purple-suffused, 5–23 mm long, 2.0–6.5 mm wide. Inflorescences axillary, 2.5–7.0 mm long, one, rarely two-flowered; peduncular sheath to 5.5 mm long; floral bract 2.5–4.0 mm long. Flowers coral red, red, vivid red, rose-red, bright orange-red, orange-yellown, yellowish-red, base of lip orange, lip yellowish with purple tip, pollinia blue, fragrance like fruit of orange. Pedicellate ovary clavate, triate, 6–8 mm long. Dorsal sepal oblong-ligulate, acute, midvein with a lamellate keel, 8–11 mm long, 2.75–3.00 mm wide. Lateral sepals obliquely oblong to ligulate-lanceolate, acute, midvein with a lamellate keel, 9.7–11.9 mm long, 2.15–2.90 mm wide. Petals oblong to oblong-lanceolate, acute to subacute, 7.5–10.7 mm long, 3.15–3.30 mm wide. Labellum oblong-lanceolate, acute, basal 2.2–3.5 mm saccate, 9.70–11.25 mm long, 3.0–3.4 mm wide; callus with a short linear base that diverges into two thin lamellae. Column broader medially, 6.0–7.2 mm long, 2.0–2.7 mm wide laterally.
Figures 1–4. 1. Aspidogyne jussariensis Ormerod. A, plant; B, flower minus tepals; C, dorsal sepal; D, petal; E, lateral sepal; F, labellum; G, column. Drawn from holotype. 2. Fernandezia myrtillus (Rchb.f.) Garay & Dunsterville. A, flower; B, petal; C, labellum; D, column, profile; E, column, ventrally spread out (minus pollinarium). A from Drew E-252 (AMES), B–C from Fosberg 2022 (AMES), D from Bristol 375 (AMES), E from Schultes s.n. (AMES). 3. Fernandezia sanguinea (Lindl.) Garay & Dunsterville. A, flower; B, dorsal sepal; C, petal; D, column and labellum; E, labellum; F, column, A–E from Lehmann 8588 (AMES, holotype of Centropetalum lanceolatum), F from Prieta P-273 (AMES). 4. Liparis vasquezii Ormerod. A, plant; B, dorsal sepal; C, petal; D, lateral sepal; E, column; F, labellum. Drawn from holotype.
Additional Specimens examined: ECUADOR. Carchi: El Mirador, El Playón de San Francisco to Julio Andrade, 3400 m, June 1991, A. Hirtz & Quito Orch. Soc. 5566 (SEL); Azuay: S of Cumbe, farm road from new road to Giron, 3000–3100 m, 27 February 1982, C. Luer & A. Pozo 7044 (SEL); near Cajas National Park, 25 km W of Cuenca, 3400 m, cult. A. Pozo in Cuenca, 20 November 1989, C.H. Dodson, N. Williams, E. Haggard & M. Whitten 17716 (SEL). Imbabura: Cordillera Oriental, Alegra, E of Volcan de Cayambe, 2865 m, 12 May 1944, W.B. Drew E-232 (AMES); same data, 10 May 1944, W.B. Drew E-250 (AMES). COLOMBIA. Narino: KM 11 along road from E-252 (AMES); same data, 10 May 1944, W.B. Drew E-232 (AMES); same data, 10 May 1944, W.B. Drew E-250 (AMES). Putumayo: Tabanel, above La Cocha, 3350 m, 30 October 1946, M.B. & R. Foster 2202 (AMES); Valle de Sibundoy, 5 km NE of Sibundoy, 2760 m, 28 November 1962, M.L. Bristol 375 (AMES, US); between La Cocha and Sibundoy, 2700 m, 30 July to 5 August 1978, C. Luer, J. Luer, J. Kuhn, R. Escobar & D. Welisch 3113 (SEL); Pasto to Sibundoy, beyond Laguna de Pasto and over the pass, 2750 m, 24 January 1987, C.H. & P.M. Dodson 17012 p.p. (SEL, lhp). Valle: Cordillera Occidental, Los Farallones, NW slope, Quebrada da del Ratón, Mina El Diamente, 2950–3000 m, 30 July 1946, J. Cuatrecasas 21767 (AMES, F, US). Cauca: W slopes of Central Cordillera of Popayan, near Pitayo, 2 September 1881, F.C. Lehmann 964 (BM); on the Penon de Pitayo, 3000 m, 20 October 1882, F.C. Lehmann 2072 (BM, K); El Tambo, Munchique, July 1948, S. Yepes Agredo & F. C. Lehmann 8587 (K); Municipio El Boqueron, Alto de los Baldios, 3150 m, 9 April 1958, J. Cuatrecasas, M. Llano & G. Gutierrez 24230 (US); Municipio Jardin, Alto de Ventanas, 15 km SW of Jardin, on the way to Riosucio, 2400–2800 m, 9 June 1987, R. Callejas, O. Marulanda, F.J. Roldan & H. Correa 3889 (MO, NY, SEL); Alto de Ventanas, on road to Riosucio, 2800–2850 m, 25–26 May 1983, R. Escobar 2694 (SEL); vereda Ventanas, Jardin to Ventanas to Riosucio road, c. 19.3 km SSE of Jardin, at border with Caldas, 2830 m, 4 May 1989, J.L. Luteyn & O. Escobar 12749 (NY); S of Jardin in S part of department, 2750 m, 19 October 1988, J.L. Zarucchi, F.J. Roldan & G. McPherson 12896 (MO): Municipio de Medellin, along road to Cerro de Padre Amaya, 10 km from Medellin to Santa Fe de Antioquia road, 2970 m, 15 September 1987, J.L. Zarucchi & A.E. Brant 3322 (MO); on Cerro Padre Amaya, W of Medellin, 2900 m, 16 January 1979, C. Luer, J. Luer & R. Escobar 3691 (SEL); Cerro Padre Amaya, 2800 m, 22 April 1983, C. Luer, J. Luer, M. Webb, R. Escobar, A. Pridgeon & E. Hagstaff 8770 (SEL); Cerro de Padre Amaya, 10.2 km from Medellin to Santa Fe de Antioquia highway, on road to summit, 2990 m, 18 March 1987, J.L. Zarucchi & B. Madrigal 4805 (MO). Cundinamarca: Paramo de Guaype, between Zipaquira and Pacho, 2600–3000 m, F.C. Lehmann 8587 (K); Zipaquira, 2600–3000 m, F.C. Lehmann 8587 (K); Rio Blanco Valley, 8 km E of Choachi, 2380 m, 18 May 1944, M.L. Grant & F.R. Fosberg 9221 (US); 12 km WSW of Junin, on the Rio Blanco, a small tributary of the Rio Piedra de Sal, drainage of Rio Sueva, 19 February 1944, F.R. Fosberg 21474 (US); Los Andes, E slopes of the Rio Blanco, 14 km WSW of Junin, 40 km NE of Bogota, 2900 m, 19 April 1944, M.L. Grant 9058 (US); Municipio Guasca, Paramo de Guasca, E slope, 3000–3500 m, 11 October 1939, H. Garcia-Barriga 8097 (US); Paramo de Guasca, toward Gacheta, 1921, Brother Ariste-Joseph s.n. (AMES, US); Paramo de Guasca, 21 December 1919, Brother Ariste-Joseph A487 (AMES, US); same area, 2850–3340 m, 22 January 1942, R.E. Schultes & R. Jaramillo M. 3177 (AMES); Paramo de Guasca, forest in Junquin, Quebrada Amarilla, 2840 m, 2 June 1940, J. Cuatrecasas 9458 (F, US); Pysaguar, 2900 m, 28 May 1942, G. Huertas Gonzalez, s.n. (AMES); Represa de Sisga, 2745 m, 2 March 1953, R.E. Schultes 18808 (AMES); Chocoanta, El Sisga, high part of La Represa, 2700–2900 m, 14 January 1962, H. Garcia-Barriga 17376 (AMES, NY, US); Chocoanta, El Sisga, 2700–2800 m, 21 February 1962, H. Garcia-Barriga 17421 (AMES); same area, 2600–2750 m, 16 April 1963, H. Garcia-Barriga 18024 (AMES, NY, US); El Sisga, road to Chocoanta, 2 km to the N of del Fuente, 2800 m, 12 October 1972, H. Garcia-Barriga 20357 (US); road between Chocoanta and “Sisga,” E side, 2900–3000 m, M. Ospina-Hernandez 169 (AMES); S of Bogota, above Gutierrez, 2700 m, 19 May 1984, C. Luer, J. Luer & R. Escobar 10374 (MO); Municipio de Uasaquen, Quebrada de Santa Barbara, 2900 m, 6 June 1948, M. Schneider 738 (AMES); same area, 3000 m, 21 November 1943, M. Schneider 738 (AMES). Santander: near Las Vegas, 2600–3000 m, 21–23 December 1926, E.P. Killip & A.C. Smith 15889 (AMES). Santander del Sur: E of Bucaramanga, toward Berlin, 3250 m, 3–5 November 1981, C. Luer & R. Escobar 6583 (SEL). Norte de Santander: N of
Fernandezia sanguinea

This species is a common and widespread alpine orchid. In the southwestern part (N Ecuador and SW Colombia) of its range the leaves tend to be smaller and a little more obovate, but intermediates occur throughout its distribution, and in some cases it would appear that the column wings are not united to the sides and back of the callus.

When Garay and Dunsterville (1972) transferred Centropetalum lanceolatum to Fernandezia they unfortunately misapplied the name to material that represents F. myrtillus. The Ecuadorian F. aurantiaca is in no way different from F. myrtillus, a taxon Senghas overlooked. Another taxon, F. ortiziana, is the result of an unfortunate error where the authors have mistaken the spread out column for the labellum.

Fernandezia tica

Additional specimens examined: ECUADOR. Azuay: “Oriente” border, Paramo del Castillo and area (crest of the E Cordillera, on trail between Sevilla de Oro and Mendez), 2745–3350 m, 18 August 1945, W.H. Camp E-4796 (AMES, NY); “Oriente” border, E Cordillera, between Ona and the Rio yacuambi, 2440–2895 m, 10–19
.
Cundinamarca: Cordillera Oriental, Montes de Guasca, in “Los Gaques,” 2000 m, 24 April 1932, J. Cuatrecasas 3033 (K); Choconta, El Sisga, high part of La Represa, 2700–2900 m, 14 January 1962, J. Garcia-Barriga 17371 (AMES); El Sisga, road to Choconta, 2 km N of del Puente, 2800 m, 12 October 1972, H. Garcia-Barriga 20596 (US, left hand plant). Boyacá: Duitama, carretera de Virolin, near KM 32, down on the river, 2900–3000 m, 2 September 1967, L. Uribe Uribe 5953 (MO, US); between Duitama and Virolin, 3360 m, 1 June 1982, C. Luer, R. Escobar & J. Portillo 8022 (SEL); Sierra Nevada del Cocuy, near Colugun (?), 2900 m, 16 August 1957, P.J. Grubb, B.A.B. Curry & A. Fernandez-Perez 529 (US).

The collection Garcia-Barriga & Jaramillo 19844 from the border of Santander del Norte and Cesar in Colombia may represent a natural hybrid between F. myrtillus and F. sanguinea since the callus on the labellum is more V-shaped (vs. subquadrate) and the column is less distinctly stalked, with the wings more like F. myrtillus in shape. The leaves are fleshy like in F. sanguinea, but perhaps more oblong and blunter like in F. myrtillus.
Christenson (2008) provided a synopsis of this group under the name Pachyphyllum Kunth. He recognised 41 species distributed from Mexico to Bolivia. However one species (P. favosifolium) has since proved to be a synonym of F. sanguinea (see above). Orchidotypos vareschii, which has been considered a synonym of F. hispidula (Rchb.f.) M.W. Chase, is here considered to be a synonym of F. schultesii.

Basionym: Pachyphyllum schultesii L.O. Williams, Caldasia 1, 3: 15, 1941.

TYPE: COLOMBIA. Cundinamarca: SE of Bogota, Paramo de Chiquaque, 3200 m, 25 September 1941, R.E. Schultes 1020 (Holotype: AMES).

TYPE: VENEZUELA. Tachira: Paramo el Batallon, 3200 m, V. Vareschi 4527B (Holotype: VEN, not seen).

Distribution: Ecuador; Colombia; Venezuela (?).

Specimen examined: ECADOR. Azuay; Gualaceo to Limon road, KM 13, 3200–3300 m, 4 March 1985, G. Harling & L. Andersson 22704 p.p. (AMES).

Dunsterville and Garay (1965) included Orchidotypos vareschii in the synonymy of Pachyphyllum hispidulum (Rchb.f.) Garay & Dunsterville. However, O. vareschii lacks the conspicuously ciliate margins of the leaves and the sheaths of the latter, agreeing much better with Fernandezia schultesii in having short, obtuse (vs. lanceolate, acute) leaf sheath lobules. A detailed examination of the holotype of O. vareschii is however needed to fully confirm its place within the synonymy of Fernandezia schultesii, because there are a number of similar taxa in this group. Gordon Dillon’s drawing of the type in the protologue of Pachyphyllum schultesii is somewhat misleading in that the lobulate nature of the leaf sheaths is not depicted. Another problem is that Dunsterville and Garay (1965) recorded P. schultesii from Venezuela but Dunsterville’s drawing shows a plant with fleshiier leaves that have truncate leaf sheaths, and flowers that have obtuse (vs. acute) sepals. I have seen collections of a similar entity from Colombia.

The record for Ecuador is new, it was found mixed in with material of Fernandezia hispidula (Rchb.f.) M.W. Chase sensu lato.

IONOPSIS KUNTH

A genus of two or three species distributed from Central America to Paraguay. The plants produce elongate panicles with attractive white flowers, often lined and tinted with violet, the lateral sepals form a short spur at the base, and the lip is prominent, broadly dilated and bilobed.

Ionopsis utricularioides (Sw.) Lindl., Coll. Bot.: t.39A, 1826.

TYPE: PUERTO RICO. Toa Alta, M. Sesse & J.M. Mocino s.n. (Lectotype, here designated: BM 000023376, image seen).

A pantropical and circumboreal genus of about 480 species when considered in the broad sense. In the New World including about 30 species. The first species proposed here is member of the recently described section Retusae (Ormerod, 2013), now a group of six known taxa. Whilst the second is a member of section Ramosae Ridl., now a group of fourteen species.

Liparis vasquezii Ormerod, sp. nov. **TYPE**: BOLIVIA. Cochabamba: Chapare Prov., road to Tablas, 2500 m, 9 February 1980, C. Luer, J. Luer & R. Vasquez 5166 (Holotype: SEL). Fig. 4.
canaliculate, base expanded, 2.8–3.8 cm long. **Inflorescence** terminal, 6.7–10.1 cm long; peduncle usually enclosed by channel of leaf petiole, 4.5–5.3 cm long; rachis sublinear 7–12 flowered, 2.2–4.8 cm long; floral bracts lanceolate, acute, to 4.8 mm long. **Flowers** with light green sepals and petals, lip light purple. **Pedicellate ovary** slenderly clavate, triangular in section, c. 11.5 mm long. **Dorsal sepal oblong-lanceolate**, acute, c. 9.75 mm long medially, 2.75 mm wide. **Lateral sepals** obliquely lanceolate, subacute, c. 8.75 mm long, 2.95 mm wide. **Petals** linear, subacute, 11.8 mm long, 1 mm wide. **Labellum** subquadrate, auriculate basally, margins minutely irregularly dentate-erose, medially with a smooth linear-oblanceolate strip, apex with a subacute apiculus, 9.1 mm long medially (12.1 mm long including auricles), to 10.9 mm wide; callus basal, transverse, shallowly retuse. **Column** slender, semi-terete, apex incurved, 5 mm long unstretched (6 mm long stretched out).

Distribution: Bolivia.

Habitat: Cloud forest, 2500 m.

Eponymy: Named after the late Roberto Vasquez, expert illustrator, contributor to the orchid flora of Bolivia, and who participated in collecting the type.

This species is easily distinguished from all others in section *Retusae* by the broadly auriculate base of the lip. The plant misidentified as *L. retusa* by Vasquez and Dodson (1982) may be a sister species of *L. vasquezii*, since it too has an auriculate labellum. It seems to differ in having larger flowers with a more elliptic lip and more complicate basal callus.

Liparis yanachagae Ormerod, sp. nov. **TYPE:** PERU. Pasco: Oxpampa, Distrito Huancabamba, Parque Nacional Yanachaga-Chemillen, Sector Tunqui, 1800 m, 11 February 2008, R. Vasquez M. et al. 33359 (Holotype: SEL). Fig. 5.

Affinis L. rusbyi Rolfe sed labello et callus quadrilobulatis (vs. bilobulatis), linea media incrassatis et sulcatis (vs. humilis et esulcatis) differt.

Distribution: Peru.

Habitat: Primary forest on the edge of a quebrada (stream), 1800 m.

Etymology: Named after the Yanachaga-Chemillen National Park.

This taxon is the seventh member of section *Ramosae* to be found in Peru, five of which are endemic taxa. It is closest to *L. rusbyi* Rolfe, sharing with that species a similar flower size, overall labellum shape, and in part form of the basal callus. It however differs from *L. rusbyi* in having a quadrilobulate (vs. bilobulate) apex to the labellum, a quadrilobulate (vs. bilobulate) basal callus, and thickened, acuform, sulcate median callus. In all other *Liparis* species of section *Ramosae* this median callus is usually represented by a low, glossy linear strip that is often not evident in herbarium material.

Malaxis SOL. EX SW.

As circumscribed by Margonska et al. (2012), this is a genus of about 90 species restricted to the Americas. Margonska et al. (2012) divided the genus into two sections, viz. section *Malaxis*, and section *Umbellulatae*. The latter is however pre-empted by *Microstylis* (Nuttal) Eaton section *Chrysanthera*, which is here transferred to *Malaxis*. Some nomenclatural issues related to the Caribbean flora may be of interest to students of that area. *Malaxis cazaldensis* Marg. [Margonska et al 2012: 335 (March 2012, S. Koeltz pers. comm)] should be added to the synonymy of *M. dodii* Acevedo-Rodríguez & Ackerman (1 Jan. 2012), both names based on the homonym *M. megalantha* D.Dod. However the name *M. juventudensis* Marg. (Margonska et al. 2012: 338) should be accepted as the correct name for the homonym *M. insularis* (H. Dietr. & M.A. Diaz) Nir. Another problem is the conflicting typifications of the name *M. umbelliflora* Sw. in Ackerman (2014, citing O. Swartz collections) and Margonska et al. (2012, citing D.C. Sol rz collections), an issue that will take detailed investigations to resolve.

Two other nomenclatural issues in Margonska et al. (2012) also concern neglected priority. Thus *M. luceroana* G. Gonzalez 1992 has priority over *M. abieticola* Salazar & Soto Arenas 2001, and *M. novogaliciana* R. Gonzalez & McVaugh 1985 has priority over *M. brachystachys* (Rchb.f.) Kuntze 1891 nom. illeg. [non (Lindl.) Rchb.f. 1861].

Malaxis section Chrysanthera (Link, Klotzsch & Otto) Ormerod, comb. nov.

Type species: *Microstylis hitionantha* Link, Klotzsch & Otto.

Maxillaria Ruz & Pavon

A genus said to have about 600 species in the classical sense. It has been divided into several genera based on molecular data, but recently Chase et al. (2015) found after the sampling of more species and using more coding regions that a broad Maxillaria was a more natural concept. One of the genera reintegrated into Maxillaria was Brasiliorchis Singer et al. It was proposed by Singer et al. (2007) to accommodate a group of 13 Brazilian, Paraguayan, and Argentinean species previously known as Maxillaria section Bolbidium (Lindl.) E.A. Christenson (Syn.: section Repentes Pfitz.). For the most part the plants can be recognised by their sulcate to ridged, bifoliate pseudobulbs, and long-lasting, campanulate, rewardless flowers. Though it should be noted that the pseudobulbs of M. barbozae Loefgren are smooth and not ridged, and dry with a roughish surface. The overlooked generic name Bolbidium (Lindl.) Lindl. however is the earliest one for this group, and thus Singer et al. (2011) proposed that Brasiliorchis be conserved over Bolbidium. The proposal is likely to be successful (K. Gandhi pers. comm.) but it is only of relevance if one accepts these plants at the generic level, it would also mean that the sectional name Repentes would have to be reinstated for use in Maxillaria. The earliest name belonging to the current concept of Brasiliorchis is Bletia humilis, described in 1829.

Microchilus Presl

A genus of about 142 species found from Mexico to Argentina. Ackerman’s (2014) treatment of Microchilus for the Greater Antilles includes a circumscription of M. plantagineus (L.) D. Dietr. that I strongly dispute. All three heterotypic taxa listed in synonymy by Ackerman belong to distinct species. As noted under above under Aspidogyne, the name Satyrium latifolium L. is a synonym of Aspidogyne querceticola (Lindl.) Meneguzzo. The other two entities, Microchilus laticalcar and M. pimentelii are not hard to recognise, indeed they can be detected in the dry state by simply looking for their distinctively broader epichiles which can be been seen with the naked eye or a low-powered hand lens. Since M. pimentelii is already furnished with a published drawing (Ormerod, 2007) that shows its distinctive characters, I provide only a sketch and some notes on M. laticalcar to elucidate its features. Also described is a new taxon from Peru.

Distribution: Dominican Republic.

Specimen examined: DOMINICAN REPUBLIC. Liali, 100–500 m, 8–20 February 1923, W.L. Abbott 2646 (AMES, US [photo AMES]).

The protologue of Erythrodes laticalcar supplies an unhelpful figure of the flower in profile, and in frontal view,
without showing details of the labellum. Furthermore the specific epithet “laticalcar” may lead to the impression that the broad spur is a diagnostic character when it is not, however Dod’s description is careful and accurate. Thus I think the unhelpful figure and misleading epithet in the protologue has led to some confusion about *M. laticalcar* and its relationship to *M. plantagineus*.

Microchilus laticalcar is readily distinguished from *M. plantagineus* by its transverse, 2.6 mm wide lip epichile, and thickly bicarinate lip hypochile. From *M. pimentelii* it is again distinguished by the thickly bicarinate lip hypochile, and less wider (2.6 vs. 4.0 mm) epichile.

Microchilus tunquianus Ormerod, sp. nov.
Type: PERU. Cuzco. La Convencion: Distrito Santa Ana, Tunqui Mayo, 1870 m, 2 November 2007, R. Vasquez, C. Davidson, E. Sucelli, J. Farfan & A. Pena 33141 (Holotype: SEL; Isotype: MO, not seen). Fig. 7.

Affinis *M. atalayae* Ormerod sed petalis floribus oblongis (vs. ligulato-spatulatis), hypochilo labello oblongo-subpandurate (vs. ovato-lanceolatis) et calcar brevioribus (2.7 vs. 4 mm) differt.

Terrestrial(?) herb to 1.2 m tall (fide collectors). *Rhizome* not seen. *Roots* terete, pubescent. *Stem* terete, rooting from lower nodes, laxly 7 leaved, 35 cm long, 0.4–1.0 cm thick; internodes 2.7–4.2 cm long. *Leaves* obliquely oblong to oblong-elliptic, subacuminate, 13.0–22.3 cm long, 4.40–6.25 cm wide; petiole and sheath 3.5–5.5 cm long. *Inflorescence* terminal, pubescent, 44.8 cm long; peduncle laxly to sublaxly 10 sheathed, 28.7 cm long; sheathing bracts 1.5–3.5 cm long; rachis subdensely many-flowered, 36.1 cm long; floral bracts ovate-lanceolate, acute, to 9 mm long, 2 mm wide. *Flowers* white, externally pubescent. *Pedicellate ovary* fusiform, pubescent, 7 mm long; capsules reddish.

Dorsal sepal oblong-lanceolate, obtuse, 4.6 mm long, 2.1 mm wide. *Lateral sepals* obliquely oblong, obtuse, 5.2–5.5 mm long, 1.70–1.75 mm wide. *Labellum* spurred, joined to column for 1 mm; spur narrowly oblongoid, obtuse, 2.7 mm long; hypochile oblong-subpandurate, 3.7 mm long, 2 mm wide basally, 1.4 mm wide subapically; epichile transversely oblong, papillose-pubescent, 1 mm long, 2.7 mm wide, lobules ovate, obtuse, 0.9 mm long, 0.8 mm wide. *Column* slender, 2.9 mm long (to tips of pollinarium).

Distribution: Peru.

Habitat: Secondary forest, on the edge of a stream, 1870 m.

Etymology: Named after Tunqui Mayo, the type locality.

This species resembles its Peruvian congener *M. atalayae* Ormerod in being a large stout plant with numerous, relatively small flowers. However *M. tunquianus* differs in having oblong, biveined (vs. ligulate-spatulate, one veined) petals, an oblong-subpandurate (vs. ovate-lanceolate) labellum hypochile and shorter (2.7 vs. 4 mm) spur.
Figure 7. Microchilus tunquianus Ormerod. A, plant; B, flower; C, flower minus tepals; D, dorsal sepal; E, lateral sepal; F, petal; G, column; H, labellum and spur. Drawn from holotype.
Odontorrhynchus Correa

A genus of Spiranthinae with perhaps three or four species. The plants occur in temperate climates of South America from Chile to Peru. After study of several Chilean specimens I have reached the conclusion that there is so far only one species found in that country rather than four different taxa. Further studies may also find that the Peruvian *O. alticola* Garay is a synonym of the Bolivian *O. chlorops* (Rchb.f.) Garay, thus leaving only three species in the genus.

TYPE: CHILE. Chiloe: Cucao, 50 m, March 1924. E. Werdermann 303 (Holotype: AMES; Isotypes: BM, HBG, not seen).

TYPE: CHILE. Valparaiso: between Camino de la Polvora and Playa Andia, 28 April 1904, Scheding s.n. (Holotype: HBG, image seen).

TYPE: CHILE. Cordillera de San Fernando, ex Herb. Santiago 287 (Holotype: HBG, image seen).

Distribution: Chile.

Specimens examined: CHILE. Arauco: above Arauco, 50–100 m, 6 March 1925, F.W. Pennell 12955 (AMES). Chiloe: Dept. Llanquihue, road between Hotel Ensenada and Volcan Osorno, 100 m, 20 March 1939, J.L. Morrison 17545 (AMES); Petrohue, slope of Volcan Osorno, 200–250 m, 13–15 February 1925, F.W. Pennell 12641 (AMES). Malloco: W of Angol, 300–400 m, 27–28 February 1925, F.W. Pennell 12834 (AMES). Ovalle: Parque Nacional de Fray Jorge, between el Cardoncito and Labranza, 550 m, 10 March 1947, C. Munoz P. 4032 (AMES). Santa Cruz:

Pichilem Cahuel, 10 m, 23 January 1929, G. Montero O. 773 (AMES). Valdivia: Cautin, Termuco, Cerro Nielol, 200 m, 20 March 1937, G. Montero O. 3094 (AMES); Termuco, La Barra ledo Sur, 3 m, 14 February 1937, G. Montero O. 3022 (AMES); Corral, Cordillera Pelada, 200 m, 21 March 1930, S. Looser 1284 (AMES); Quitaluato, 21 March 1937, H. Gunten 15264 (AMES). Flowers from the following nine Chilean collections were also seen: Bridges 607, Eschscholtz s.n., Hort. Kew s.n., Lechler s.n., 827, 1467, 1467A, Leibold 3011, McCrae s.n.

After examining several collections of this species it is evident to me that it is fairly a variable plant. There is a little variability in the habit, some plants are more slender with laxer inflorescences (e.g., *Pennell* 12834 and *Montero* 773), but these are connected to the stouter plants with dense spikes by intermediates. In one plant (*Montero* 773) the labellum epichile varied from broadly ovate, obtuse to transversely oblong. This variation in epichile shape may be linked to developmental (young flower vs. older flower) stage. I have also observed it in material of the Bolivian *O. chlorops*. Thus Garay’s figure (1982) from the type of *Spiranthes chilensis* would represent a flower in which the labellum epichile hasn’t fully developed, and this likely influenced him to propose *O. variabilis* which has a larger epichile. Another variable factor is flower size, I found the sepals and petals were from 5.5 to 8 mm long, without any disjunction.

The type form of *Odontorrhynchus chilensis* is supposed to be the smaller flowered plants, with which *O. domeykoanus* agrees very well. The protologue of the latter does not mention pubescent ridges on the lip, but pubescence frequently appears invisible under light microscopes when directly viewed from above. Another character used to discriminate species within *O. chilensis* is hypochile shape. This I find often varies depending on how much one can flatten the hypochile to make a drawing. Thus in *O. domeykoanus* the lip has flattened down quite well, but in the larger flowered samples (like *O. erosus*) this is a little more difficult. The latter cannot be distinguished from *O. chilensis* based on a “strongly arcuate and undulate hypochile” because all specimens have a somewhat arcuate lip in the natural position, which can become undulate only when one tries to flatten it.

Pleurothallis Sw.

In the traditional sense this is a genus of about 2000 species, but it now has been divided into several segregate genera (see e.g., Luer 2004). The single species described here had been described in the unrelated genus *Gomesa* R. Br. in 1826, and then later transferred to *Rodriguezia Ruiz & Pavon*. Neither of these genera occur in the Greater Antilles, and since no later author recognised the identity of the plant, it was listed among the excluded species of the Antillean flora by Ackerman (2014).

Heterotypic synonyms: *Gomesa stricta* Spreng., Syst. Veg. ed. 16, 3: 710, 1826 syn. nov.

TYPE: JAMAICA. Without locality, 1821, *C. Bertero s.n.* (Holotype: B, destroyed).

Distribution: Caribbean; Mesoamerica; Colombia; Venezuela.

The combination *Pleurothallis quadrifida* is often attributed to Lindley (1842), but he made it six years earlier in 1836. Cogniaux (1909) listed a Jamaican collection of Bertero as *P. longissima* Lindl. (a later synonym of *P. quadrifida*). This I believe was likely the unannotated type of *Gomesa stricta*, since the sparse description of the latter fits *P. quadrifida* very well.

Polystachya W.J. Hook.

This pantropical genus of epiphytes was recently monographed by Mytnik-Ejsmont (2011). In the broad sense *Polystachya* contains about 235 species, most of which are in Africa, with about 13 in the neotropics. The notes below concern typification and synonymy of the two earliest known neotropical species of *Polystachya*, viz. *P. concreta* and *P. foliosa*.

Distribution: Pantropical.

Reichenbach f. cited no collector in the protologue of *P. extinctoria*, only cryptically mentioning that the type was a Jamaican specimen that had been misdetermined as *Cranichis luteola* was a Jamaican specimen that had been misdetermined as *Viscum delphinii flore minimum* Edwards’s *Pleurothallis quadrifida* was a Jamaican specimen that had been misdetermined as *Viscum delphinii flore minimum* Edwards’s *Pleurothallis quadrifida* was a Jamaican specimen that had been misdetermined as *Viscum delphinii flore minimum* Edwards’s

Literature Cited

LEPANTHOPSIS KAYI (PLEUROTHALLIDINAE, ORCHIDACEAE), A NEW SPECIES FROM EASTERN ECUADOR

Lisa Thoerle and **Xavier Cornejo**

Abstract. *Lepanthopsis kayi*, a new species from the Amazonas region in Ecuador, is described, illustrated, compared with similar species, and its generic placement discussed. *Lepanthopsis kayi* is distinguished from all other species in the genus by the combination of ramicauls shorter than the leaf, with glabrous sheaths with the ribs and ostia thickened, and a very congested inflorescence bearing many overlapping, simultaneous flowers arranged in two opposite-facing ranks, the flowers with a proportionally very large, densely pubescent lip, ca. 50 percent longer than the lateral sepals.

Keywords: Amazonas, Ecuador, Lepanthopsis, Orchidaceae, Platystele, Pleurothallidinae

The genus *Lepanthopsis* (Cogn.) Ames contains ca. 44 species (Karremans, 2016), ranging in distribution from southern Mexico and southern Florida (U.S.A.) to the north, through Central America and the Greater Antilles, and to Brazil and Bolivia in the south. The species are nearly evenly split between the American continents and the Greater Antilles, where many are Hispaniola endemics. In this paper, we describe a new species of *Lepanthopsis*, known from the province of Pastaza in the Amazonas natural region of Ecuador. Andreas Kay, noted nature photographer, guided the second author to these plants at Finca Ursula.

Lepanthopsis kayi Thoerle & Cornejo, sp. nov. **TYPE:** ECUADOR. Pastaza: Finca Ursula, 18 km E of Puyo, on a ridge above the Bobonaza River, 650 m, 8 January 2016, X. Cornejo & H. A. Kay 8738 (Holotype: GUAY), L. Thoerle illustr. 305. Fig. 1–3.

Lepanthopsis kayi is distinguished from all other species in the genus by the combination of the plant with ramicauls shorter than the leaf, with glabrous sheaths with the ribs and ostia thickened, and a very congested inflorescence bearing many overlapping, simultaneous flowers arranged in two opposite-facing ranks, the flowers with a proportionally large, densely pubescent lip, ca. 50 percent longer than the lateral sepals.

Plant small, epiphytic, caespitose, roots slender. **Ramicauls** erect to horizontal, 5–7 mm long; enclosed by 2–3 sheaths with thickened ribs and ostia. **Leaf** erect to horizontal, coriaceous, 15–30 mm long including the petiole ca. 5 mm long, 6–8 mm wide, cuneate below into the petiole. **Inflorescence** a suberect to horizontal, very congested, simultaneously many-flowered raceme, with up to 40 or more flowers with the sepals overlapping, in two opposite-facing ranks, ca. 3.5–5 cm long including the capillary peduncle ca. 2.5–3.5 cm long, with a bract at about the middle, emerging from a node below the apex of the ramicaul; **floral bracts** thin, acuminate, 1–1.25 mm long; **pedicels** 0.75 mm long, bending sharply after emerging from the floral bract; **ovary** ribbed, 0.3 mm long, bent sharply near the base. **Flowers** with sepals and petals translucent yellow-green, glabrous, sepals with external, irregular, red blotches; **sepals** externally carinate, broadly elliptical, obtuse, 1-veined, dorsal sepal 1.25 mm long, 1 mm wide, lateral sepals 1.2 mm long, 0.75 mm wide, connate 0.2 mm; **petals** narrowly elliptical, acute, 1 mm long, 0.2 mm wide; **lip** red with pale yellow margins, thick, densely pubescent, ovate-oblong with apex broadly rounded, basally concave between convex margins, apically convex, 1.75 mm long, 1 mm wide, the base subtruncate, fixed to the base of the column; **column** yellow-green, cucullate, stout, 0.3 mm long, 0.66 mm wide, stigma bilobed, lobes internally flushed with red, anther cap cream, pollinia not observed.

Eponym: named for Andreas Kay, nature photographer, who discovered this species.

Phenology: observed in flower and in fruit January through June.

Habitat and ecology: *Lepanthopsis kayi* is found as an epiphyte in wet secondary forest, most commonly growing ca. 2 m high on tree trunks in the understory, and also in the upper canopy, favoring shady, windy areas. Plants were observed growing on liana stems of *Strychnos* L. (Loganiaceae), *Menispermaceae*, *Philodendron* Schott (Araceae), and unidentified dead trees. It is found alone or intermixed with other species of Pleurothallidinae, including *Platystele stenostachya* (Rchb. f.) Garay, *P. ornata* Garay, *Lepanthes ximenae* Luer, *L. deleastes* Luer, *Dryadella gnomica* (Luer) Luer, and *Scaphosepalum rapax* Luer.

Distribution: known only from the type locality, where this species is locally frequent.

Some of the morphological characters of *Lepanthopsis*...
FIGURE 1. Lepanthopsis kayi Thoerle & Cornejo. A, habit; B, detail of a basal sheath; C, partial inflorescence; D, dissected flower, lip expanded; E, ovary, lip, and column, lateral view. Drawing by L. Thoerle, based on the Holotype.
kayi are intermediate between those associated with the genera *Lepanthopsis* and *Platystele* Schltr. Luer noted that the flowers of the two genera were “very similar to, if not indistinguishable from” one another, distinguishing *Lepanthopsis* by the plant with elongated ramicauls, usually longer than the leaves, with lepanthiform sheaths characterized by ciliate or scabrous ribs and ostia, with the ostia dilated (Luer, 1990, 1991). In spite of the floral similarities, a recent assessment of the phylogenetic relationships within the subtribe Pleurothallidinae places the two genera in different affinities: *Platystele* is part of the *Specklinia* Lindl. affinity; *Lepanthopsis*, the *Lepanthes* Sw. affinity (Karremans, 2016).

The ramicauls of *Lepanthopsis kayi* are much shorter than the leaves, 5–7 mm long vs. the 15–30 mm long leaf, and are clad with glabrous sheaths, but the sheaths of mature growths have the thickened veins and ostia associated with the genus *Lepanthopsis*. While the character of the inflorescence is not uniform in either genus, with some species of *Lepanthopsis*, such as *L. astrophora* (Rchb.f. ex Kraenzl.) Garay, displaying the loose, flexuous raceme commonly associated with species of *Platystele*, while a few species of *Platystele* display the very congested inflorescence more often seen in the genus *Lepanthopsis*. The flowers of the former are arranged either in a dense cylinder, as in *Platystele densiflora* P. Ortiz, or in a raceme that is more or less umbellate, such as *P. dasyglossa* P. Ortiz. No species currently assigned to *Platystele* displays flowers in two opposite-facing ranks. The inflorescence of *L. kayi*, with overlapping flowers arranged in two ranks with most open simultaneously, is characteristic of *Lepanthopsis* sect. *Lepanthopsis*.

There are two similarly vegetatively anomalous species of *Lepanthopsis*. When Stenzel described *Platystele hyalina*, the glabrous sheaths of the ramicauls led to its generic placement, although he noted that the sheaths were ribbed and thickened, as in the genus *Lepanthopsis* (Stenzel, 2002). Recently, Karremans et al. (2016) transferred this species to *Lepanthopsis*, based largely on these sheaths. This species is readily differentiated from *L. kayi* by its lax inflorescence.
(vs. very congested), bearing only 4–12 flowers (vs. up to 40 or more) with a shorter lip, ca. 75 percent of the length of the lateral sepals (vs. ca. 150 percent). Another species with short ramicauls clad in glabrous sheaths, *L. vellozicola* R. C. Mota, F. Barros & Stehmann, was described from a Brazilian collection (Mota et al., 2009). Although this species shares flowers arrayed in 2 opposite-facing ranks, the inflorescence is lax (vs. very congested) and usually shorter, to 37 mm long, bearing 4–8 flowers (vs. 35–50 mm long, with up to 40 flowers) with a lip much smaller than the completely fused lateral sepals (vs. ca. 150 percent of the length of the shallowly connate lateral sepals).

Figure 3. *Lepanthopsis kayi* Thoele & Cornejo. Detail of inflorescence. Photographed in situ by Andreas Kay, from the type population.

Literature Cited

SOBRALIA TURRIALBINA (ORCHIDACEAE: SOBRALIEAE): LONG CULTIVATED AND NOW DESCRIBED

ROBERT L. DRESSLER,1–3 MARCO ACUÑA,4 AND FRANCO PUPULIN1–3,5

Abstract. Sobralia turrialbina is described and illustrated from Costa Rica. The new species is compared with the morphologically similar S. chrysostoma, from which it can be distinguished by the leaves restricted to the terminal third of the stem, the floral bracts twice longer, the flowers dusty pink or pale rose, and the lip with no keels, provided with a hazelnut-brown gorge and the apical margin finely striped with rose-purple. Notes on species distribution, habitat and ecology, and etymology are provided.

Resumen. Se describe y se ilustra Sobralia turrialbina de Costa Rica. Se compara la nueva especie con S. chrysostoma, morfológica-mente similar, de la cual puede distinguirse por las hojas distribuidas solamente en el tercio apical del tallo, la brácteas florales el doble de largo, las flores de color rosa grisáceo o rosado pálido y el labelo sin keels, provisto de una garganta color café-avellana y el margen apical finamente estriado de rosado-purpúreo. Se provén notas sobre la distribución, hábitat, ecología y etimología de la especie.

Keywords: flora of Costa Rica, new species, Sobralia

Even though the orchids of the genus Sobralia Ruiz. & Pav. represent a common element in both pristine and disturbed landscapes in the tropical region of the Americas, they are still poorly understood as to their diversity and biology. With near 200 species, the genus is widely distributed in the Neotropics with the notable exception of the West Indies, but the ephemeral and gregarious flowering of most species, and the particular delicacy of the flower tissues, make Sobralia a difficult candidate for collection and study. In the last ten years, scientists at the Lankester Botanical Garden, University of Costa Rica, focused in the diversity of Sobralia, building up a large ex-situ collection with literally hundreds of specimens from Costa Rica and abroad, to circumvent the inherent difficulties of studying Sobralia with the traditional technique of pressing and drying fertile field specimens (Dressler and Bogarín, 2007; Bogarín et. al., 2008; Dressler and Pupulin, 2008; Dressler and Bogarín, 2010; Dressler and Pupulin, 2010; Dressler and Bogarín, 2011; Dressler et. al., 2011; Dressler, 2012, 2013; Dressler and Pupulin, 2014; Dressler et. al., 2014; Fernández et. al., 2014; Dressler and Pupulin, 2015). Thanks to this effort, the flora of Costa Rica presents today a somewhat artificial peak in Sobralia diversity, with nearly 40 recorded species, a hundred times greater than Brazil and eight times greater than orchid-rich Ecuador in terms of diversity index. Still, new species of Sobralia frequently appear among cultivated plants, and we took this opportunity to describe one here.

There seem to be more plants of this puzzling species in gardens than in nature. The plants vary a good deal in both size and flower color, yet it is a very distinctive species and we feel that it must be recognized as such.

The species was first brought to our attention a couple of years ago by one of the authors (MA), who was trying to give a name to a Sobralia that he could not match with any documented species. When he sent us a photograph of the flower, we had to admit that it looked quite different from any other Sobralia that we already knew. The plant had been cultivated in a garden in the town of Turrialba, and even though the owner did not remember where it came from, he was kind enough to give a part of the plant to MA, who brought it to the Lankester Botanical Garden.

The plant flowered again at Lankester Garden in September 2015, and having then the opportunity to study a living flower, we could confirm that it was really distinct from the other species of Sobralia that we knew from Costa Rica. Instead of the shades of purple or bright pink, which are so common in Central American Sobralia species, the flowers of this particular specimen were of a somewhat dusty, dull rose, while at the same time having a depth reminiscent of nacre. On the same ground color, the lip presented a deep chestnut brown gorge, the color breaking down toward the apex into dense lines becoming fine rose-purple stripes on the ruffled edge of the midlobe. Surely, this was quite a novel and showy color combination. We carefully documented the plant and prepared vouchers, both dry and in alcohol, storing them under Dressler’s number 7341. We were reluctant, however, to describe a new species from a plant coming from an unknown locality. In the following months, MA verified that plants of this species were indeed quite common in cultivation in the gardens of Turrialba, and he strongly suspected that the species was a native of that region. If this was the case, we hoped that,
sooner or later, more information on its natural distribution would emerge.

By the end of the year, MA was informed that at least some of the plants cultivated in Turrialba (including the one growing at Lankester Garden) may have been collected in a property at Mata de Caña (“sugarcane plant”), not far from Turrialba, in a mountainous region formed by a series of deep valleys draining toward the Pacuare River, one of the largest rivers that flow the Talamanca range toward the Caribbean Sea. We contacted the caretaker of the finca, and it was quite clear that he was not willing to receive a group visit of botanists searching for a “flor de un día” (single-day-flower) plant, as Costa Ricans refer to Sobralia, on the property he supervised. Checking the coordinates of the finca on a satellite map, it was obvious however that a vast forested region could be explored in the nearby areas along the high basin of Río Pacuare. Searches there proved successful, and we now have at least one large plant that was collected in nature. As we feel that it is clearly a valid species, we can therefore describe the “new” Sobralia commonly grown in gardens at Turrialba as:

Sobralia turrialbina Dressler, M.Acuña & Pupulin, sp. nov.

Type: COSTA RICA. Limón: Siquirres, Pacuarito, Alto Yolilall, 9°59'4.68"N, 83°32'47.59"W, 290m, path along the Pacuare river, wet tropical forest, epiphytic on the trunk of a fallen tree, originally at some 10 meters from the soil, 17 April 2016, flowered in cultivation at Lankester Botanical Garden, 13 May 2016, M. Acuña 8 (holotype, USJ; isotypes, JBL), Fig. 1–3.

Species habitu medio in magnitudine, Sobraliae chrysostomae Dressleri similis in forma generali, sed caulibus foliatis in tertio terminalis tantum, bracteis floralis duplo majoribus, floribus rosaceo-pulveruluntibus nacreis, rare pallets rosaceis, labello ecarinato fauce fusco-abellana in margine apicali fine rosato-purpureo striato recedit.

A medium-sized species, morphologically similar to Sobralia chrysostoma Dressler, with the stems bearing leaves only in the apical third, the floral bracts twice longer, the flowers dusky pink or rarely pale rose, the lip with no lateral floral apices, the lip chestnut-brown within the gorge, pale pink or pinkish white along the margins, the apex with vivid pink-purple radiating stripes, the osmophores bright yellow. Sepals similar, narrowly oblong-elliptic, obtuse to subacute, minutely apiculate, curved, 5.8–7.0 × 1.8–2.2 cm, distinctly conduplicate at the base, the dorsal sepals suberect to erect, the lateral sepals spreading almost horizontally. Petals narrowly obovate, broadly obtuse, 5.0–6.0 × 2.5–2.9 cm, the apex reflexed, with slightly undulate margin. Lip obscurely 3-lobed, obovate, 7 × 5 cm, the lateral lobes erect, encircling the column; the blade with 2 basal, divergent, bright yellow teeth, and 9 slightly prominent, dark brown veins from the base up to two-thirds of lip length, the lateral veins shorter; the midlobe deeply reflexed, ruffled, spreading, reflexed. Column clavate, semiterete, 4.2–5.0 cm long, 0.8–1.0 cm wide distally, the apex provided with two aciculiform, upcurved wings about 0.8–1.2 cm long, free for 0.5–0.7 cm, anther and stigma ventral. Anther cap cuculate, elliptic, compressed, 2-celled, 7 × 5 mm. Pollinia 4, soft, mealy, in two symmetrical pairs of different size, not sharply distinct from the caudicles, each hemipollinarium 5 × 2 mm.

Additional specimens examined: COSTA RICA. Cartago: Turrialba, La Suiza, Jabillos, Mata de Caña, ca. 9°54’33”N, 83°35’46”W, approx. 900 m, cultivated at Lankester Botanical Garden, flowered and prepared 18 Sept. 2015, R.L. Dressler 7341 (JBL) (Fig. 4). Alajuela: San Carlos, Venecia, growing in the garden of the Catholic Church, ca. 10°22’00”N, 84°17’00”W, approx. 100 m, collected by M. Acuña and A. Arias Arias, cultivated at Lankester Botanical Garden, flowered and prepared 17 August 2015, R.L. Dressler 7342 (JBL) Fig. 5–6.

Epónymo: The specific epithet refers to the town of Turrialba in Costa Rica, where the species is frequently grown as a garden plant. Most of the specimens we know were also collected around Turrialba. Costa Rican orchidology has a long tradition of names dedicated to Turrialba, among which are species in the genera Epidendrum (Reichenbach 1871), Goodyera (Schlechter 1923), Lepanthes (Reichenbach 1855), Maxillaria (Schlechter 1918), Notylia (Schlechter 1923), Oncidium (Schlechter 1911), Pleurothallis (Luer 1991), and Trichopilia (Reichenbach 1863). The toponymic dedication has traditionally been spelled as “turrialbæ” (also “turrialbæe” and “turialvae”), considering that the name of the volcano and the adjacent town are derived from the Latin turris alba, white tower, in reference to the white smoke coming out from the high volcano crater, or from the Aragonese patronym Torrealba (see, for example, Garita Hernández 1995). An alternative etymology of Turrialba has been proposed by other scholars (Gagíni, 1917; Cleto González 1920), who consider the name derived from an indigenous root, as the word Turru o Turu is still found in several local toponyms, such as Turrucares, Turrubares, and others. Gagíni (1917) suggests that the name Turriares is the hueter (a Chibchan language once spoken in Costa Rica and Panama) pronunciation of the word Torirávac, or the “altar stone of the Toris.” This may perhaps explain why in old documents dating to the Spanish colonial occupation of Costa Rica, the name is cited as Turrialva or Turiarba (in the year 1569) or Zuriarba (in 1608), and in other documents of the seventeenth and eighteenth centuries it is recorded as Turri alba, Turriarva, and Torialba (Valerio 1953). When the toponym Turrialba is treated as a Latin compound, turris-alba,
Figure 1. Sobralia turrialbina Dressler, M. Acuña & Pupulin. A, habit; B, flower; C, dissected perianth; D, column and lip, lateral view (the lip longitudinally sectioned); E, column, three quarters-view; F, column, ventral view; G, pollinarium, dorsal and ventral views; H, anther cap. Lankester Composite Digital Plate prepared by F. Pupulin based on the holotype.
FIGURE 2. The flower of *Sobralia turrialbina* Dressler, M.Acuña & Pupulin, from the plant that served as the holotype. Note the nacreous, dusty rose color of the flower. Photograph by F. Pupulin.
FIGURE 3. Frontal view of the flower of *Sobralia turrialbina* Dressler, M.Acuña & Pupulin, from the plant that served as the holotype. Photograph by F. Pupulin.
Figure 4. *Sobralia turrialbina* Dressler, M. Acuña & Pupulin, flower from *Dressler 7341*. Photograph by M. Fernández.
FIGURE 5. *Sobralia turrialbina* Dressler, M. Acuña & Pupulin. **A**, habit; **B**, flower; **C**, dissected perianth; **D**, column and lip, lateral view (the lip longitudinally sectioned); **E**, column, three quarters and ventral views (with and without anther); **F**, anther cap and pollinarium (dorsal and ventral views.). Lankester Composite Digital Plate based on *Dressler 7342*, prepared by F. Pupulin.
FIGURE 6. Sobralia turrialbina Dressler, M.Acuña & Pupulin (Dressler 7342). Note the pale rose flowers, produced in pairs. Photograph by F. Pupulin.
the genitive case is correctly *turris-albae*, or *turrialbae* (i.e., of the white tower). When, on the other hand, Turrialba is treated as a regular toponym ending in -a, according to recommendation 73D.1 of the Code of Nomenclature, the epithet derived from it should be *turrialb-ensis, turrialb-(a)na, turrialb-ina or turrialb-ica*.

Distribution: Known only from Costa Rica (Fig. 7).

Habitat and ecology: Plants of this species grow as large epiphytes on the trunks and primary branches of the lower canopy in tropical wet, premontane moist and premontane wet forests. Specimens have been recorded from the Caribbean watershed of the Cordillera de Talamanca and Cordillera Central in Costa Rica, at elevations between 100 and 900 meters.

Among the plants grown in the large collection of *Sobralia* at the Lankester Botanical Garden, we also identify as *S. turrialbina* a specimen originally collected in the plains of San Carlos, north of the Central Cordillera in Costa Rica (*Dressler 7342*). This specimen is smaller in size (stems up to about 100 cm), and its flowers are of a very pale and delicate pink, with a bolder suffusion along the mid vein of sepals and petals. The lip base has bright yellow basal calli, but instead of the dark hazelnut brown blotch on the disc there is a deep rose and orange blotch, fading yellow toward the apex, with fine, pink, radiating stripes on the ruffled edge of the midlobe (Fig. 5–6). The details of plant habit, the lip without keels, and the column, are however indistinguishable from those of the darker forms of *S. turrialbina*, as recorded in the premontane forests of Talamanca. Such a disjunction in distribution may seem strange, but it is likely an artifact of undersampling, as it is not uncommon among Costa Rican *Sobralia* that species distributions span over two or three main chains of the continental divide, and often along both watersheds (Fig. 8).

Literature Cited

Page 262 intentionally left blank.
Abstract. The Swiss botanist Adolphe Tonduz worked in Costa Rica from 1889 to 1920. For 20 years he carried out important activities as a plant collector and the curator of the largest Costa Rican herbarium beginning at the Instituto Físico-Geográfico Nacional, and later at the National Museum. A large number of new species of Orchidaceae are found among his collections, most of which were published by the German taxonomist Rudolf Schlechter between 1906 and 1923. The type specimens of most of these species were lost during a fire in the Berlin herbarium in 1943. The typification of the orchid species described on the basis of collections by Tonduz is a fundamental step for correct interpretation of Schlechter’s and other authors’ taxonomic concepts, and this paper follows the path of similar works aimed at identifying the orchid species originally collected in Costa Rica by M. A. Brenes, R. E. Endrés, and C. Wercklé. Previously lectotypified and neotypified taxa are recorded, including their bibliographical references. Here we formally designate lectotypes for Brassavola scaposa, Bulbophyllum vinosum, Camaridium costaricense, C. dendozioides, Chysis costaricensis, C. nigrescens, Eliganthus tonduzi, Epidendrum abbreviatum, E. cardiphorum, E. henrici, E. octomerioides, E. pachyacron, E. polychlamys, Goodyera ovatilabia, G. turrialbae, Habenaria endresiana, H. gymnadenioides, Maxillaria microphyton, M. pachyacron, Microstylis adolphii, M. pachyacron, Microstylis pachyacron, M. pandurata, M. pandurata, M. pandurata, M. tonduzi, Ornithocheilus tonduzi, Pitterella calcarata, Pleurothallis microtatantha, Scaphyglottis brachiata, Sobralia amparoae, Spiranthes tonduzi, Stelis aemula, S. connixita, S. effusa, S. longicuspis, S. narcodanta, Stenopiera costaricensis, and Tetrageasme gracilis. A new lectotypification is proposed for Epidendrum adolphi. Neotypes are designated for Cycnoches tonduzi and Epidendrum barbeyanum, and epitypes are designated for Pleurothallis microtatantha and Stelis aemula. Spiranthes tonduzi is not typified, as we did not have access to any extant materials for study.

Keywords: Jean François Adolphe Tonduz, Costa Rica, Orchidaceae, typification.

While several chapters of the long-term work devoted to the treatment of Orchidaceae for the Flora Costaricensis have been completed, or are now close to completion (Atwood and Mora-Retana, 1999; Pupulin, 2010a; Pupulin and Bogarín, in prep; Pupulin et al., in prep), the need for a solid framework that allows a consistent application of names to the orchid species of our flora, as well as for a critical examination of previously synonymized names and
their actual taxonomic status, has become more compelling. Large, systematic studies of a country's flora represent a great opportunity for the ultimate understanding of species identities, as they allow incorporation in species circumscriptions of those geographical variations and unique features that characterize local populations as definite taxa. To this extent, the evaluation of scientific names to be permanently associated with local orchid populations is crucial, as it is widely understood and accepted that loose specific circumscriptions and highly variable specific concepts, often used in the past, do not reflect the actual richness and evolutionary hyper-diversification of the family. It is from this perspective that the collation and cataloguing of the information on type designations for Costa Rican orchid names, as well as new designations when appropriate, has become a basic activity for those engaged in the project of producing a modern orchid flora of Costa Rica. This collation and cataloguing is aimed at promoting both firm identification of local species, and nomenclatural stability for the taxa to which the names must apply. This work is particularly important and critical in the case of the orchid species originally described by Rudolf (Friedrich Richard) Schlechter (1872–1925), as the main set of type specimens on which the German taxonomist based his concepts and the associated analytical drawings and notes were destroyed during the bombing of the Berlin herbarium in 1943 (Ames, 1943; Hiepko, 1987). It was fortunate that several of the Costa Rican orchid specimens sent to Schlechter for determination were conserved as duplicates in Costa Rican herbaria, and in some cases widely distributed to other herbaria both in Europe and the United States, making lectotypification possible and reducing the need for neotypification. Conscious of the taxonomic importance of the analytical drawings prepared by Schlechter of his new species’ holotypes that were left unpublished upon his premature death in 1925, the curator at the Botanical Museum in Berlin-Dahlem (and orchid specialist), Rudolf Mansfeld (1901–1960), published a large selection of Schlechter’s floral analyses of orchid species between 1929 and 1934 (Mansfeld, 1929, 1930, 1931, 1932, 1934). In a few cases, these illustrations are invaluable in understanding Schlechter’s taxonomic concepts, as they comprise the only extant evidence of the original materials. Of further help was the strong interest in the systematics of Central American orchids developed by Professor Oakes Ames (1874–1950) at the Botanical Museum of Harvard University during the first decades of the twentieth century (Sax, 1950; Plimpton and Ames Plimpton, 1979; Ossenbach, 2009). Ames had the opportunity to have the original drawings of Schlechter’s holotypes traced under the supervision of the German botanist; he also acquired some isotypes before the incorporation of Schlechter’s herbarium into the Botanical Museum of Berlin-Dahlem. Lists of Schlechter’s remaining orchid types still conserved in Berlin (as well as those of Kränzlin and Mansfeld) were published by Butzin. However, no Costa Rican specimens survived the destruction of the herbarium during World War II (Butzin, 1978, 1980).

The present paper, dedicated to the typification of the orchid species based on Costa Rican material originally collected by Jean François Adolphe Tonduz (1862–1921; Fig. 1), is a further step towards the complete cataloguing of the orchid names based on Costa Rican material. This paper also follows previous contributions of this nature (Barringer, 1986; Pupulin, 2010b; Pupulin et al., 2011, 2012, 2013).

Adolphe Tonduz in Costa Rica

During the last decades of nineteenth century, the still young Republic of Costa Rica, which had achieved its independence from Spain in 1821, began a decisive process of modernization and centralization of its education system as part of a general effort to pursue material progress, and to create an informed citizenry that could move the country towards a solid industrial and technological future (Eakin, 1990). To further this end, Costa Rican politicians turned to Europe in search of teachers and scientists to staff the newly designed secondary school system. As early as the 1860s, faculties of foreign teachers were created at the Colegio San Luis Gonzaga in Cartago and, a decade later, at the Instituto Nacional in San José. Eventually, in the late 1880s, the Minister of Education under the liberal government of President Bernardo Soto (1853–1931), the capable Mauro Fernández Acuña (1843–1905), created the Liceo de Costa Rica and the Colegio Superior de Señoritas (Fig. 2, A–B) in San José, the capital of the small republic. A group of European academics were hired to organize these institutions, the first two public high schools in Costa Rica. Among the teachers who responded to Fernández’s call were several noted scientists, mostly of Swiss origin, who over the next few years not only laid the foundations of a modern educational system, but also inspired a golden age of Costa Rican science. Between 1886 and 1889 Paul Bioley (1862–1908), who would work on botany and the zoology of invertebrates; the botanist Henri Pittier Dormond (1857–1950; Fig. 3); the chemist Gustav Michaud (1860–1924); the mathematician and astronomer Jean Rudin (1849–1932), Pittier’s brother-in-law; the naturalist Adolphe Tonduz; the engineer Gustave Michaud (1862–1908), who would work on botany and the zoology of invertebrates; the botanist Henri Pittier Dormond (1857–1950; Fig. 3); the chemist Gustav Michaud (1860–1924); the mathematician and astronomer Jean Rudin (1849–1932), Pittier’s brother-in-law; the naturalist Adolphe Tonduz; the engineer Gustave Michaud (1862–1908), and Johann Sulliger (1830–?), another mathematician, came to Costa Rica attracted by the educational reforms enacted by Mauro Fernández and Bernardo Soto.

The first group of Swiss educators arrived in Costa Rica in 1886. In this group the name of Pablo Bioley stands out for his important contributions to the development of Costa Rican education. Among other works, Bioley published a Greek grammar and a compendium of natural history (Bioley, 1887, 1898). One year later, in 1887, the second group arrived, of which the great Henri Pittier was part. Mauro Fernández, the Secretary of Education, founded the National Museum by special decree in May of the same year. At Pittier’s initiative, the National Meteorological Institute followed in April 1888. Finally, in June 1889, the Instituto Físico-Geográfico Nacional was founded, under
the direction of Pittier, into which the National Museum, the Meteorological Institute and the Topographical Office were integrated.

Pittier divided the work of the Institute into three sections: Geography, Meteorology and Botany, reserving for himself the direction of the first and searching for competent persons to direct the other two.

Following the recommendation of one of his former professors, Jean-Balthazar Schnetzer (1823–1896), Pittier promoted Adolphe Tonduz to the staff of the Institute. At the time, Tonduz was working as a preparator at the herbarium in Lausanne, where he had studied but never graduated. Pittier obtained the necessary funding from the government and Tonduz was assigned to the botanical service (Häsler and Baumann, 2000) (Fig. 4). Tonduz, the youngest of the seven children of Paul Gustave Tonduz, was born on September 18, 1862 in Pully, Canton of Vaud. He arrived in Costa Rica on June 17, 1889 and soon became, as collector and preparator, an avid disciple and the right hand of Pittier, who wrote in the Institute’s annual report in 1892: “…one arrives easily to the conclusion that the election of this active officer was by all means a happy one.”

Tonduz would have liked, undoubtedly, to become more than just a notable collector, but his life turned into a vicious circle that he could never break because of two insurmountable obstacles. The first was his chronic alcoholism, which led him occasionally to abandon his work for days or even weeks. Pittier had to use all of his influence and friendship with the President of the Republic to prevent Tonduz being dismissed from his position. Although he was capable of working for hours on end, Tonduz often succumbed to the old temptation; as Otón Jiménez (1895–1988), his pupil and one of his best friends, recalls, “he would not go back to work, disregarded his personal hygiene and the tidiness of his clothing, did not eat, and his occupation was to roam along the streets, sometimes alone, sometimes in the company of doubtful friends, visiting the bars until his modest financial means and his credit were exhausted” (Jiménez, 1971).

In another sad anecdote, Otón Jiménez (1971: 63) remembers how don Guillermo Acosta (1878–1955) helped him during one of Adolphe Tonduz’s “alcoholic journeys.” “Don Anastasio Alfaro, director of the National Museum, asked me to bring back Tonduz [who was in San Ramón], to avoid sanctioning him for abandoning his duties. A Roman enterprise! I had to ask the Political Chief of San Ramón, Guillermo Acosta Piepper, for help, and through his paternal intervention I managed to put him on a horse and in a ten-hour journey, step by step, we reached Grecia and from there, in another similar journey, Alajuela. It was then easy for me to bring him to the house of my neighbor, David Mora.” Pittier had to ensure that the Swiss herbarium that bought Tonduz’s botanical specimens had payments transferred to his own accounts so that he could administer them for his unfortunate protégé.

The second obstacle for Tonduz was, ironically, Pittier, his master and protector. Tonduz’s personal circumstances, and the despotic character of his mentor, created such a strongly dependent relationship that Tonduz could never escape the shadow of the great Pittier. Thus, the decline of Adolphe Tonduz began when Pittier abandoned the Instituto Físico-Geográfico in 1903 and left Costa Rica for good in 1905. For more than 14 years, Pittier’s figure had overshadowed the unstable Tonduz. When Pittier left for Washington, Tonduz was left completely defenseless and would never be able to bring order to his life again without the support and guidance of his compatriot.

Tonduz briefly occupied the position of curator of the National Herbarium in 1904 and worked for the United Fruit Company until 1908. Following this, he managed to support himself thanks to the kindness of a few good friends like Charles Lankester (1879–1969) and Amparo López-Calleja de Zeledón (1863–1957) (Fig. 5), for whom he also collected and whose gardens he looked after for many years (Fig. 6, A–B). Thanks to the orchid specimens prepared by Tonduz for “Doña” Amparo, the great German orchidologist Rudolf Schlechter described an important number of new species for the flora of Costa Rica.

In his later years, Tonduz’s life alternated between prosperity and misery, although he would continue collecting plants until shortly before his death. In vain he asked Pittier, already established in Venezuela, to take him to work with him. Pittier refused, knowing that Tonduz would be more of a hindrance than help.

Finally, in the first months of 1921, Adolphe Tonduz migrated to Guatemala, where he took the position of Director of the Section of Phytopathology in the Agricultural Service. A few months later he passed away, on December 20 of the same year, from alcoholic enterocolitis according to his death certificate.

In a letter to the American orchidologist Oakes Ames in 1922, in which he commented on his impressions about Tonduz and Carlos Wercklé, Charles Lankester wrote: “Poor Tonduz was also hopeless in this regard [alcoholism] and the possession of a small sum of money was immediately fatal. I kept him here 10 months during our previous stay in Cóncavas [Lankester’s farm in Paraíso, near Cartago] and had him ‘dry’ the whole time, clothed and fed him…he became a new man, but a salaried position in Guatemala broke him completely.”

After receiving news of his death, Pittier, at that time residing in Caracas, Venezuela, published in 1922 an obituary in the Gazette of Lausanne, Switzerland, in which he wrote: “… Thanks to his collections, studied by the most eminent specialists of two hemispheres, the vegetation of Costa Rica is today the best known of tropical America and we are greatly in debt to the scientific work of our friend Tonduz…He had the character of a countryman of the Gros de Vaud [a region of the Swiss Canton de Vaud]: sharpness of judgement, much of bonhomie and a heart of gold, somewhat bitter in the last years because of the vicissitudes of life. He has descended to his grave surrounded by the esteem and sorrow of all who knew him.”
Figure 4. Adolphe Tonduz in a photograph from his passport, around 1905. Courtesy of Rudolf Jenny.
FIGURE 5. Amparo López-Calleja Basulto in a photograph of circa 1900.
Figure 6. The house of Costa Rican ornithologist José Cástulo Zeledón and his wife, Amparo López-Calleja de Zeledón, in San José (today La Sabana neighbor). A, View from the house front; B, Internal view of a patio from the gardens. Courtesy of Jaime García.
For a young naturalist interested in the study of botany, the Costa Rica of the last two decades of the nineteenth century was probably the best place in the world to be. Not only was the country one of the areas richest in biodiversity on the planet, but there was also an enlightened group of politicians seriously committed to understanding and using the diversity of the country’s natural resources to make Costa Rica a modern and developed republic. A year before the arrival of Tonduz at the port of Puntarenas, the government had dispatched Anastasio Alfaro (1865–1951), a young lawyer (and self-taught naturalist and archaeologist), on a mission to the United States to learn about the best museographic techniques, and upon his return funded the creation of the Museo Nacional de Costa Rica. At the beginning of 1889, Pittier supervised the building of the four-story Instituto Meteorológico (Fig. 7), just across the road from the National Theatre, equipped with modern scientific instruments. At Pittier’s behest, in the same month as Tonduz reached Costa Rica, the government consolidated the Museum and the Institute into a single scientific centre, the Instituto Físico-Geográfico Nacional (IFGN), of which Pittier assumed the directorship (Eakin, 1999).

Even though the merger of the botanical collections of the Museo Nacional into the newborn IFGN lasted only for a few months before the National Museum regained its full autonomy, it was enough time to create a botanical section within the Institute, and this was in need of a trained curator.

Hired as the head of IFGN’s botanical section, Tonduz began his collecting activity almost immediately upon his arrival in his new home. His first documented Costa Rican collection bearing an unequivocal date is a specimen of *Piper* that he gathered in the neighborhood of San José on June 20, 1889, three days after his arrival. This plant eventually served as a syntype for the description of *Piper pseudopsis* C.DC. (Piperaceae, *Tonduz 1088*, G and US), published in 1898 in the *Anales del Instituto Físico-Geográfico y del Museo Nacional de Costa Rica*. His first Costa Rican orchid, a specimen of *Malaxis carnosa* (Kunth) C.Schweinf. (*Tonduz 1243*, US), was collected in August 1889. By December of that year, Tonduz had already prepared over 400 specimens, twenty of which would serve as the types for new plant species; the last collected, on December 28, was an isotype of *Eupatorium pittieri* Klatt (Asteraceae, *Tonduz 1698*, CR and US).

![Image](https://example.com/image.png)

Figure 7. The building that hosted the original Instituto Físico-Geográfico Nacional, not far from the National Theater building (the roof of which is visible on the left) in San José.
Over the course of the ensuing decade, Tonduz became the inseparable companion of Pittier in most of his expeditions throughout the country (Fig. 8). He travelled with him, together with Anastasio Alfaró, to the border with Nicaragua, and in 1891, with Pablo Biolley, to the southern regions in the basin of the Río Grande de Térraba. Tonduz left a legacy of fascinating accounts of his explorations of Costa Rica in his publications *Expediciones botánicas efectuadas en la parte meridional de Costa Rica por los años 1891–1892* (Tonduz, 1893), *Exploraciones botánicas en Talamanca* (Tonduz, 1895a) and *Herborisation au Costa Rica* (Tonduz, 1895b, 1896, 1897a). In the foreword to his well-known *Ensayo sobre las plantas usuales de Costa Rica*, Pittier (1908) writes: “…during fourteen years he was my companion during my travels, sharing with me the hardships and dangers that generally are part of the explorations, as well as the delights offered to the naturalist by the marvelous sights of certain scenes hidden in ignored corners of the virgin forests, or in the discovery of new and never dreamed-about forms.” He was an indefatigable collector and a true artist who prepared his specimens with great care and skill (Jiménez, 1971). Tonduz travelled through all accessible regions of the country, from Guanacaste and the border with Nicaragua to the Atlantic and the southern regions. Cerro Tonduz (1930 m), to the North of San Vito de Coto Brus in southern Costa Rica, was named in his honor.

What made his botanical activity distinct from other collectors was the commitment that Tonduz, inspired by Pittier, assumed towards his adopted country. Unlike the foreign naturalists who had visited Costa Rica previously, working for foreign institutions and governments and pursuing their own agenda, Tonduz acted on the behalf of the Costa Rican government and for a Costa Rican institution (MacCook, 2002). During the field expeditions by Tonduz and other collectors of the IFGN, specimens were usually collected at least in duplicates (Eakin, 1999); one to be kept in the collections of the IFGN and the other for study and determination by appropriate specialists. These duplicates were mostly sent to Pittier’s main scientific correspondent, Théophile Durand (1895–1912) of the National Botanic Garden of Belgium in Brussels, who in turn distributed them to recognized specialists at the Boissier Herbarium in Geneva, the United States National Museum, the Botanical Museum Berlin-Dahlem, and the Museum National d’Histoire Naturelle in Paris, among others. On the basis of the almost 10,000 specimens gathered in the botanical section of IFGN by 1895, and under Pittier’s supervision, these specialists also collaborated in subsequent years to produce the first attempt at a formal flora of Costa Rica, the *Primitiae florae costaricensis*, three volumes of which were published from 1891 to 1905 (Durand and Pittier, 1891, 1896; Pittier, 1898–1900, 1901, 1904, 1905) (Grayum et al., 2004). Unfortunately, the published portions of the *Primitiae* did not cover monocots (with the exception of Araceae and Iridaceae), and the orchid materials collected by Tonduz were not systematically studied.

The magnitude of Tonduz’s work is best expressed in the words of Pittier, who, in a 1915 letter to the botanist and historian John Barnard wrote: “Adolphe Tonduz has been and is still, a laborious and painstaking collector, responsible for almost 60% of the 20,000 specimens of the Instituto Físico-Geográfico….” And although Pittier complained that “…his collections contain again and again the same species and comparatively few new things;” the truth is that over 120 species new to science were discovered in Costa Rica by Tonduz and many of them are named after him (see Appendix).

One of Tonduz’s major successes was the rediscovery of *Oreomannea pterocarpa*, a giant of Costa Rican forests, first discovered by the Dane, Anders Øersted in 1846, but not recorded again until Tonduz collected this species near Juan Viñas in 1914. Important also were his mycological studies. As a trained mycologist he published in 1897, for the types of the Instituto Físico Geográfico, a booklet on the sooty mold disease, or *fumagina*, which inhibits photosynthesis in coffee bushes (Tonduz, 1897b). He collaborated with the Argentinian Carlos Spéazzini in his work *Reliquiae Mycologicae tropicae et fungi costaricensis nonnulli* (1918) and prepared a work with Otón Jiménez entitled *Hongos de Costa Rica*, which he began in 1908 and left unfinished in 1914.

Under Pittier’s untiring and determined leadership of the Institute, field activities and preparation of botanical specimens for the herbarium of the IFGN and for distribution abroad were incessant during the last decade of the XIX century. According to a survey of the collections made by Tonduz, deposited in ten of the world’s major herbaria (AMES, BM, BR, CR, F, G, MO, NY, P, US) between 1889 and 1899, he prepared some 10,000 specimens—the years of 1893 and 1898 being the most prolific (with 1075 and 1775 specimens respectively). In 1900 Tonduz’ activity was reduced to the herborization of a little more than 500 specimens. After 1901, the paucity of field activity clearly reflects the political and administrative troubles affecting the leadership of the Institute, which eventually drove Pittier to renounce his directorship in 1903, and the Institute to cease its activities in 1904.

Without the impulse of Pittier’s vision and deprived of the IFGN’s shelter, the first decades on the new century were the poorest for Tonduz in terms of botanical exploration and field collections. In the ten years, between 1902 and the end of 1911, Tonduz collected a little over a hundred specimens. From the last eight years he spent in Costa Rica, only 185 field collections are known to exist. This figure shows a somewhat anomalous and isolated peak of activity in 1913, when Tonduz was briefly hired by the French geographer, archaeologist, and explorer, Count Maurice de Périgny (1877–1935), to botanize during his exploratory trip to the northern Guatuso plains (Taladoire, 1995). Jiménez (1971) categorizes de Périgny’s expedition as “disastrous.” He reports that all the way up to the River San Juan and on the return via the River San Carlos it was impossible to make botanical collections. On the way back
FIGURE 8. Adolphe Tonduz (right) with Henry Pittier (center) and George K. Cherrie (left), taxidermist at the National Museum of Costa Rica. Courtesy of the late Luis Diego Gómez Pignataro.
to the capital, Tonduz decided to make a prolonged stay in the rich botanical area of San Ramón de Alajuela, where he collected specimens from the end of April until the middle of May 1913. He managed to collect 173 plant specimens before the Director of the Museum recalled him to his duties in San José. No collections at all are known by him between 1915 and 1917, or in 1919 (Fig. 9). The last plant he collected in Costa Rica, a specimen of cactus, *Epiphyllum thomasianum var. costaricense* (F.A.C. Weber) Ralf Bauer (Tonduz 18051), is dated November 1920, and it was his only collection for that year. His last Costa Rican orchid, a plant of *Lycaste cf. brevpaptha* (Klotzsch) Lindl. and Paxton, was a collection *sine numero* prepared in January 1914 from a cultivated specimen grown near his home in San Francisco de Guadalupe.

When he eventually left Costa Rica at the beginning of 1921, it was after more than thirty years spent botanizing in the country. A poor man deeply addicted to alcohol, Tonduz left behind an impressive botanical legacy of over 12,000 prepared specimens kept in the herbarium of the Museo Nacional and distributed to another 20 herbaria across the world.

After leaving Costa Rica, Tonduz collected plants again in Guatemala from the end of February until the end of September 1921, three months before his death. His documented collections from Guatemala comprise more than 1,100 specimens, which Tonduz numbered consecutively, beginning again with number 1 (*Cyathea costaricensis* [Mett. ex Kuhn] Domin, Cyatheaceae). Among the Guatemalan collections a few orchids are included.

Orchidaceae Tonduziana

According to the evidence gathered from his extant collections, the orchid family was not one of Tonduz’s favorite groups. Whilst roughly one in ten species of the Costa Rican flora is an orchid, and whilst epiphytic orchids represent a very common element in any of the Costa Rican landscapes, only 143 of the 5,100 known collections by Tonduz (or about 2.8%) represent species of Orchidaceae.

The Orchidaceae collected by Tonduz were scientifically described by Rudolf Schlechter, who published 56 species and 1 subspecies; Friedrich (Fritz) Wilhelm Ludwig Kränzlin (1837–1934), who authored 3 species; Oakes Ames (2 species); Alfred Barton Rendle (1865–1938), Alfred Cogniaux (1841–1916) and Florence Helen Woolward (1854–1936), who each authored a single species.

The descriptions by Schlechter, which greatly outnumber those by other authors, belong to four different groups of specimens defined by the periods and the origin of the materials. The first orchid collections by Tonduz to be described as new to science were published by Schlechter from 1906 to 1911, in his series of *Orchidaceae novae et criticae* (Schlechter, 1906, 1907, 1910, 1911). The specimens upon which the 30 new taxa were described were received at the Botanical Museum Berlin-Dahlem, as part of the materials that the IFGN sent for identification to the National Botanic Garden of Belgium in Brussels, and distributed by them to the specialists of other recognized European botanical institutions. They correspond to plants collected by Tonduz in several Costa Rican localities during his golden age as a botanical collector, between 1890 and 1900, and most bear quite specific collecting data.

A second group of orchids, described from 1918 and 1921, belong to materials received at Berlin from the Herbarium of the Museo Nacional de Costa Rica, where Tonduz deposited his collections after the dissolution of the IFGN in 1904, and where he was briefly hired as director that same year. He worked intermittently as the curator of the herbarium under the directorship of his friend and protector Anastasio Alfaro. These specimens mostly bear no collecting date (Schlechter, 1918, 1921).

The third group of Tonduz’s plants upon which Schlechter based his descriptions of new orchid species were received at Berlin shortly after World War I and published in Schlechter’s *Additamenta ad Orchideologiam Costaricensem* (1923). Here Schlechter described another 13 new taxa, several of which lack any information about locality. It is noteworthy that Schlechter did not give Adolphe Tonduz the recognition of an eponymous chapter, as he did with Alberto Manuel Brenes (1870–1948) (*Orchidaceae Brenesianae*; Schlechter, 2016).
1923) and the brothers Kurt and Alfred Brade (1867–1955 and 1881–1971, respectively) \((\text{Orchidaceae Bredaeanae};\) Schlechter, 1923). Instead, Tonduz’s new orchids were mostly included within the chapter dedicated to the great “patroness” of Costa Rican orchidology, Amparo López-Calleja de Zeledón. In the introduction to his \textit{Orchidaceae Amparoanae}, Schlechter (1923) remembers when, in 1921, Tonduz sent him a first collection of Costa Rican orchids, explaining that they were the result of an initiative by doña Amparo, who had not only had Tonduz pressing specimens from her cultivated plants, but had also sent Karl Wercklé (1860–1924) out to the field to collect new materials for his studies (Pupulin, 2010b). Indeed, the relationship between Schlechter and Amparo López-Calleja had begun in 1919, when, after receiving a letter from Rudolf Schlechter asking for Costa Rican orchid material, doña Amparo reacted with enthusiasm and arranged to hire Tonduz and Wercklé for this purpose. The results were three shipments of herbarium specimens that were received by Schlechter between 1921 and 1923. Among these specimens, Schlechter found three new genera and 62 new species (Schlechter, 1923). Lankester in 1923 wrote with envy: “No wonder Schlechter had a rich CR collection; he had the whole of the orchids from the National Herbarium!” In the few cases when collecting numbers are recorded (i.e., \textit{Isochilus amparoanus} Schltr., \textit{Tonduz} 49; \textit{Sobralia amparoae} Schltr., \textit{Tonduz} 51; \textit{Epidendrum falcatum} var. \textit{zeledoniae} Schlt., \textit{Tonduz} 132), these should not be confused with actual “field numbers” as Tonduz apparently used—again—his low numbers for the materials pickled in the garden of Amparo López-Calleja. The new orchids described from collections by Tonduz in 1913 were mostly gathered among the hills surrounding the small town of San Ramón, in the northwestern Cordillera de Tilarán. Tonduz lived in San Ramón for a short time after the disastrous expedition to the River San Juan under the patronage of Guillermo Acosta Piepper (1878–1955), mayor of the village, to whom Schlechter (1923) would dedicate his genus \textit{Acostaea} in the Orchidaceae. Acosta was a good friend to Tonduz and helped to rescue him during the tremendous binge that put to an end his last herborization in Costa Rica in 1913 (Jiménez, 1971). Even though the specimens collected in this period and cited by Schlechter in his protologues have no numbers, some of the isotypes that we studied for the present work associate Tonduz’s name with herbaria unique numbers; they are mentioned accordingly in this paper.

Finally, there is a fourth, small group of species that were described in Europe from living specimens, sent by Tonduz during his first years of activity in Costa Rica (Kränzlin, 1895a, 1895b; Rendle, 1900; Cogniaux, 1902; Woolward, 1906; Schlechter, 1919). According to Jenny (2013, 2015), Tonduz had been invited in 1889 by M. William Barbey (1842–1914) to assume the curatorship of the Herbarium Boissier in Geneva. Jenny suggests that it was the same Barbey who helped Tonduz in obtaining his position with the Costa Rican government. The Swiss engineer, botanist, philanthropist and founder of the \textit{Bulletin de l’Herbier Boissier}, W. Barbey, married in 1869 Caroline Boissier (née Butini Boissier, 1847–1918), a Swiss botanist, and daughter of the famous botanist Pierre Edmond Boissier (1810–1885). Throughout an entire life of botanical explorations, Pierre Boissier had assembled a large collection of exotic plants on his land in Valleyres, where more than 3,500 species of plants were grown, and at Rivage, on the shores of Lake Geneva (another 1,500 plus species, as well as an important private herbarium) (Fig. 10). Some of the plants requiring a controlled environment were grown by his daughter, Caroline, in the greenhouse built on one of her father’s properties at la Grande Perriére in Chambésy, near Geneva, where all the plants of the collections at Rivage were transferred after Boissier’s death in 1885.

Figure 10. The building hosting the Herbier Boissier in Geneve, circa 1890. From Autran, 1896.

Among the tropical epiphytes, Orchidaceae were well represented in Boissier’s collection, and by 1885 a total of 772 species and 62 varieties of living orchids, belonging to 122 genera, had been recorded (Autran and Durand, 1896). Whatever the nature of the relationship was between Tonduz and Barbey, he must certainly have had some connection with the Barbey-Boissier family, as several of his fascicles about the botanical exploration of Costa Rica were originally published in the bulletin of the Boissier herbarium (Tonduz, 1895b, 1896, 1897a). It is not known how many living plants Tonduz sent to the collections of Madame Barbey, but according to one of the employees at the Herbier Boissier, Gustave Beuverd (1867–1942), the shipments from Costa Rica were frequent, particularly of ferns, aroids, orchids, cacti, Piperaceae and bromeliads (Beauverd, 1922). At least six of the specimens under the care of the chief-gardener at La Perriére, M. Paul Simmler, served as the basis for the description of new orchid species or to discuss previously published names (Kränzlin, 1895a, 1895b; Rendle, 1900; Cogniaux, 1902; Woolward, 1906; Schlechter, 1919). The Swiss botanist and entomologist Eugène John Benjamin Autran (1855–1912) was the curator of the Boissier Herbarium at that time. He was responsible for the identification of the Barbey-Boissier living collections and in charge of sending botanical samples of orchids for study by the best specialists of the time, Schlechter and Kränzlin in Berlin-Dahlem, and Cogniaux in Brussels. He was also the editor of the \textit{Bulletin de l’Herbier Boissier}, where most of the new orchid species that Tonduz sent from Costa Rica to Chambésy were described.
The numbers associated with specimens collected by Tonduz have traditionally been regarded as his own collecting numbers and treated as such in both floristic and monographic essays (Cogniaux, 1891; Schlechter, 1906, 1907, 1910, 1911; Britton and Rose, 1928). Strictly speaking, however, they are not collector’s field numbers as contemporary botanists use them, but, rather, somewhat similar to the “accession numbers” used in botanical collections. Under Tonduz’s curatorship, the herbarium of the IFGN apparently adopted a system of consecutive enumeration of the exsiccate that was independent of the collector. As Adolphe Tonduz was by far the most active collector at the Institute, followed at a great distance by Pittier, most of the numbers assigned to the specimens at the herbarium indeed correspond to Tonduz’s collections. They must not, however, be interpreted as a system of consecutive, personal numbers by Tonduz. Once specimens are arranged in ascending order, Tonduz’s enumeration presents in fact several “gaps.” While in some cases this might be the artificial effect of unicate specimens that have been lost or destroyed (and of which we have no trace), in several cases the missing numbers appear instead in their due order in the series of the Institute collections, but associated with the name of a different collector. So, for example, IFGN number 2176 is a specimen of Prosthechea livida (Lindl.) W.E. Higgins, collected by Tonduz in San José on March 10, 1890, while number 2177, the type of Ornithidium costaricense Schltr., is a collection made by Pittier at Rancho Flores, on the slopes of Barva volcano, in February of the same year. Collections made by Tonduz at Rancho Flores that same month, are recorded at the IFGN under numbers 2147 and 2149. Number 6793, the holotype of Inga aestuariorum Pittier (Fabaceae), is based on a collection made by Pittier himself in April 1892, while number 6795 is a specimen of Senna reticulata (Willd.) H.S. Irwin & Barneby (Fabaceae), collected by Tonduz in March 1892, and number 6797, is a collection of the same month made by Pittier, (Piper pseudodillatatum C.DC., Piperaceae). Number 6593 (legit Tonduz) is Commelina ruftipes Seub. (Commelinaeae), and number 6600 (legit Pittier) is the type of Vanilla pittieri Schltr., but both the specimens came from the banks of the River Ceibo, near Buenos Aires in southern Costa Rica, where they were both collected in January 1892.

Considering the system of accession numbers used by the employees of the IFGN to identify the specimens, there is no rational reason to believe that the numeration did not start at number one. As we noted previously, the first IFGN number assigned to a specimen of Tonduz’s that can with certainty be assigned to a specific date corresponds to a collection of June 20 1889, when the naturalist had just arrived in Costa Rica. This collection, however, bears the number 1088 which would lead to the conclusion that the previous numbers had already been assigned to specimens by other collectors, probably Pittier himself or one of his colleagues. Among the numbers assigned to Tonduz, there are numbers lower than 1088, i.e. 61, an Olyra latifolia L. (Poaceae) from La Guácima, or 182, a specimen of Pharus (Poaceae) from Limón on the Atlantic coast, but they have no collecting date. “Accession” numbers from 354 to 693 are collections made between July 1891 and January 1894. Numbers 900–903 correspond to late collections of April–May 1913.

When the National Museum inherited the botanical collections of the IFGN after its dissolution in 1904, the sheet numeration previously in use at the Institute was maintained. It remains unmodified until today, as the old numbers of the IFGN have been incorporated into the barcodes associated with each specimen. So, the plants collected by Tonduz for the herbarium of the Institute bear their original numbers. These were adopted by the herbarium of the National Museum to identify the collection sheets with a number corresponding to that handwritten on the labels of the duplicates sent out from the IFGN, and later from the Museum, to other research centres around the world. As can be seen, these numbers are not Tonduz’s own numbers, but they nonetheless unequivocally identify the specimens collected by Tonduz for the Institute. When, in 1904, the Museum took over the management of the IFGN herbarium, the staff continued assigning “accession numbers,” or “herbarium numbers,” to new collections by Tonduz, but these numbers were diluted among those assigned to the collections of other botanists and collectors working for the Museum, including Carl Wercklé, Alberto M. Brener, and the brothers Alfred and Alexander Curt Brade, among others.

Because of the numeration system originally adopted by the IFGN, the numbers assigned to the collection sheets at the herbarium were not always arranged chronologically, and it is legitimate to assume that later collections could sometimes receive lower numbers if processed at an earlier stage. This could explain several apparent contradictions in the numeration of Tonduz’s materials. So, for example, numbers 1530–1541 belong to collections of September–November 1892, but number 1690 is from 1889, and most of the collections of 1892 have numbers from 6524 onward. Numbers from 7355 through 7463 represent collections of the year 1898, but they are included within the numbers assigned to Tonduz’s collections for 1893, which range from 7226 to 8472.

Students of Tonduz’s material should be forewarned, as apparently his lowest numbers might have been used for different sets of specimens, i.e. the plants he originally collected in Europe; some of the early collections from Costa Rica (IFGN numbers); the specimens prepared from plants cultivated in the garden of Amparo Calleja de Zeledón; those collected in Guatemala during his last herborizations.

Furthermore, the actual name of the collector (preceded by the word legit) was apparently only of accessory importance at the IFGN according to the method of numeration in use at there. For the purpose of specimen accession and filing into the collections, a given number represented, for the curators of the IFGN, simply the result of a “collection act,” and was completely unrelated to who collected the plant
or the plants. Any new accession number was assigned to a new specimen or to a group of specimens supposedly belonging to the same taxon. When it/they were extracted from Pittier’s field press, they were “assigned” to him (i.e., legit Pittier); when coming from the press of Tonduz, they became associated with Tonduz’s name (i.e., leg. Tonduz).

The method had its shortcomings. When Pittier and Tonduz collected together—and this happened often—they frequently collected the same plants at the same locality and at the same moment. According to the system used by the curators at the IFGN, all the specimens belonging to the same taxon and the product of the same collecting act received the same accession number. This is the reason why we have collections, like those of Epidendrum cardiophorum from Tsaki (Apr. 1895, no. 9519), or E. henrici from the trees around San José (no. 2176), which have the same accession number but were recorded on some labels as collected (lecti) by Pittier, and on others as collections by Tonduz. The “collecting act” could sometimes include up to three different collectors, as is shown in the case of the Oncidium turialbae type collection. The holotype, eventually destroyed in Berlin, was a plant collected by Paul Boiley “auf ‘Crescentia’-Bäumen bei Turrialba” (on Crescentia trees at Turrialba), to which the Institute assigned the number 8423. This is the information that Schlechter (1910) quoted in the protologue, and the illustrator employed by Professor Ames in Berlin copied from the holotype on his tracings. However, two other collectors took part to that collection. On the specimen that the IFGN sent to the specialists of the Smithsonian in Washington (US 57719), number 8423 is associated with a collection by A. Tonduz (“Sur les Crescentia à Turrialba”), and on the specimen that US received for identification from the Herbar of the Jardin Botanique de l’État in Brussels (US 57718), the same number 8423 is a collection by H. Pittier.

For the purposes of the IFGN this was obviously unimportant, but it became a nomenclatural conundrum when authors of new taxa interpreted the “accession number” of the IFGN as a true “collector number” and quoted it as such in their protologues. How should we treat the duplicates of Pittier 9519 (as it was quoted in the protologue and is written on the labels at CR and US) which are conserved at BR and G but with labels assigning the collections to Tonduz? How to manage the collection of Epidendrum henrici made by Tonduz and conserved at CR, which has the same accession number as the simultaneous collection by Pittier, which was eventually used as the holotype and erroneously treated as a Pittier number? In such cases, and in view of the historical and nomenclatural importance of these specimens, we opted for correcting the original error as it appeared in the protologues, quoting [between square brackets] the numbers with the meaning that was originally assigned to them at the IFGN and at CR, and treating all the specimens with the same accession numbers as duplicates.

Typification of Costa Rican Orchidaceae Described from Collections by A. Tonduz

We discuss here those ‘Tonduz’ collections that served as the bases for the description of 63 new orchid taxa. They are alphabetically arranged and accordingly numbered in the catalogue from 1 to 63, beginning with Brassavola scaposa and ending with Tetragamestus gracilis. Some of the concerned species, however, have quite complicated taxonomical histories, and in several cases the same specimens were used to typify new names when the original epithets could not be maintained in the new proposed generic combinations (es. Camaridium adolphii, based on Ornithidium tonduzi; Camaridium tonduzi, based on C. costaricense; Epidendrum boisserianum, based on E. biflorum: E. palmense, based on E. magnibraceatum). In these cases, for the convenience of the reader we included the replacing names in the alphabetic arrangement of the catalogue, but they were not numbered in order to not inflate the number of taxa originally described on Tonduz’ collections. Epidendrum tonduzi, a nomen nudum, is also listed alphabetically for reasons of completeness, but it is accordingly not numbered as no actual Tonduz’ specimen was ever proposed to typify the name.

1. Brassavola scaposa Schltr., Orchis 13: 77. 1919. **TYPE:** COSTA RICA. [San José]: Auf Bäumen der Berge und Hügel bei San Jose, A. Tonduz s.n. (holotype: B, destroyed; photograph of the holotype, designated here as the lectotype: AMES 40559, barcode’00056718). Fig. 11.

Several numbers may appear stamped on sheets from AMES. When we cite a “barcode,” we refer to a number given to each specimen and shown on a small label, ca. 1 x 5 cm, with the heading “Harvard University Herbaria.”
FIGURE 11. Lectotype of *Brassavola scaposa*. Courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College.
FIGURE 12. Lectotype of *Bulbophyllum vinosum*. Courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College.
In Costa Rican populations of *B. nodosa sensu lato* from the Pacific lowlands, the inflorescence is usually distinctly shorter than the leaves, while it is subequal to longer than the leaves in populations from the Caribbean lowlands, which may perhaps be treated as a different taxon. Schlechter (1919) compared *B. scaposa* with a *Brassavola* specimen illustrated by Alphonse Gossens (1866–1944) in the *Dictionnaire iconographique des orchidées* (Cogniaux and Gossens, 1897) and treated as *B. grandiflora* Lindl., which was based on a plant collected at Puntarenas, on the Pacific coast of Costa Rica.

The photograph of the holotype at AMES (Fig. 11) clearly show a specimen that, albeit vegetatively small (leaves vary in length from 6.5 to 9.5 cm), has terete leaves and short inflorescences that barely reach half the length of the subtending leaf. The single flower is comparatively large with respect to the plant, but with sepals 5.5 cm long and a lip 4.5 cm long, it is smaller than flowers of other populations recorded from the Pacific coast (i.e., Pupulin, 1998: 970–971).

The name has been treated as a synonym of *Brassavola nodosa* (L.) Lindl. by Pupulin (2002) and Dressler (2003), and we agree with that interpretation.

2. *Bulbophyllum vinosum* Schltr., Beih. Bot. Centralbl., Abt. 36(2): 411–412. 1918. TYPE: COSTA RICA. [Guanacaste], Forêt de Nicoya, December 1899, A. Tonduz s.n. (*Herb. Inst. Fis.-Geogr. Nac.* 13734) (holotype: B, destroyed; lectotype, selected here: tracings of the original illustration of the holotype made under Schlechter’s supervision, AMES barcode 0027795; barcode 0027795; illustration of the flower from the isotype at US, perfectly match the copy of Schlechter’s sketches of the holotype, kept at AMES. While the isotype at CR has no flowers, and US 577789 only has a crushed flower in a pocket, both the isotypes at US (815052) and K are fertile. Even though the fertile plant at US probably represents just a couple of lateral branches of a main stem, we choose to lectotypify the species with this specimen because it was studied and illustrated by Atwood for his detailed monograph of *Maxillaria sensu lato* for the flora of Costa Rica (Atwood, 1999).

Overlooking his previous description of *C. costaricense* of 1907, Schlechter described the same species again three years later with the name *Camaridium tonduzii*, basing it on the same specimen collected by Tonduz under his number 12429 (Schlechter, 1910). Under the provisions of art. 52.1. of the International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) (McNeill et al., 2012), the latter name is therefore illegitimate and to be rejected as nomenclaturally superfluous (the taxon to which it was applied including the type of a name that ought to have been adopted under the rules).

When *Maxillaria Ruiz & Pav.* is treated in its broadest sense, *sensu lato* Chase et al. (2015), *C. costaricense* must be treated as *M. tonduzii* Ames & Correll, a new name created to circumvent the previous use of the specific epithet *costaricense* in *Maxillaria*, already occupied by *M. costaricense* Schltr. (1923). If a narrower circumscription of *Maxillaria* is adopted instead, as that proposed by Whitten et al. (2007) and Blanco et al. (2007), the correct name in *Camaridium* is *C. costaricense*.

No actual type material of the species is known to be in existence. The tracings of Schlechter’s drawings made in Berlin under the supervision of Schlechter, chosen here as the species’ lectotype, clearly illustrate the habit and the floral details of this relatively common species. The name is a synonym of the widespread *Bulbophyllum pachyrachis* (A.Rich.) Griseb.

The drawings made by John Atwood for his studies in Costa Rican *Maxillaria*, hydrating flowers from the isotypes at US, perfectly match the copy of Schlechter’s sketches of the holotype, kept at AMES. While the isotype at CR has no flowers, and US 577789 only has a crushed flower in a pocket, both the isotypes at US (815052) and K are fertile. Even though the fertile plant at US probably represents just a couple of lateral branches of a main stem, we choose to lectotypify the species with this specimen because it was studied and illustrated by Atwood for his detailed monograph of *Maxillaria sensu lato* for the flora of Costa Rica (Atwood, 1999).

Both the isotypes at US and K bear the number 17619, assigned to the specimens by the staff of the Museo Nacional de Costa Rica, while in the protologue Schlechter cited number 17620. The latter number, however, belongs to a collection of *Epidendrum majale* (see above, under this species’ entry). As the labels of both the sheets state that they were collected in the “Forêts des collines de San Ramón, 1500–1600 m, 12 May 1913,” in accordance with the citation in the protologue, we prefer to treat the number citation in Schlechter (1923) as a *lapsus calami*, and consequently the specimens at US and K as isotypes. The isotype at US, selected here as the lectotype, is fertile
Figure 13. A, Lectotype of *Camaridium costaricense*; B, Lectotype of *Camaridium dendrobioides*; C, Lectotype of *Chysis costaricensis*; D, Lectotype of *Cranichis nigrescens*. A–C, courtesy of the United States National Herbarium, Smithsonian Institution; D, courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College.
and in perfect condition. It was studied and annotated by C. Schweinfurth and by Atwood for his treatment of Costa Rican *Maxillaria* (1999), who hydrated and drew one of the flowers of the type specimen.

Even though in his treatment of *Maxillaria* for the *Flora Costaricensis*, Atwood (1999) cited the holotype of *C. dendrobioides* as conserved at CR, this probability is unlikely, as the original specimens studied by Schlechter were destroyed in Berlin. He was probably misled by Schlechter’s citation of the herbarium of the Museo Nacional de Costa Rica in the species’ protologue, but this is just the number that the Museum assigned to the collection of Tonduz to uniquely identify it before sending the specimen to Berlin. No specimens of *C. dendrobioides* are actually conserved at CR. Atwood (1999) treated *C. dendrobioides* (under *Maxillaria*) as a complex of species, probably including *C. similae* Schltr., *C. jimenezii* Schltr., and *Maxillaria valerioi* Ames & C.Schwein.

The copy of Schlechter’s original drawing conserved at AMES well illustrate the habit and flower of the species, with the distinctly three-lobed lip, provided with a ligulate midlobe, which characterize *C. dendrobioides* when considered as a distinct species from *C. similae* and *C. jimenezii*.

The specimen conserved at US is the only extant evidence of the original material described by Schlechter, and is therefore selected as the species’ lectotype. It is, however, a sterile specimen, and the real identity of *C. costaricensis* could therefore remain quite a mystery. The chances to collect the species again in the forests of San Ramón are low, as plants of *Chysis* have been severely collected in the field due to their showy flowers, and several populations in the area of San Ramón are known to have become extinct through overcollection and the impact of coffee plantations.

In 1993, Dressler annotated the isotype specimen with the name *C. tricostata* Schltr., but this taxon of dubious Central American origin has thick pseudobulbs, while according to the protologue, the pseudobulbs of *C. costaricensis* are just about 1 cm in diameter, according with the plant mounted on the sheet at US. For this reason, both Pupulin (2002) and Dressler (2003) treated *C. costaricensis* as a synonym of the narrow, fusiform-stemmed *C. bruennowiana*, even though the latter is based on a Peruvian collection by J. Warczewicz. Dressler (2003) also suggested that the Pacific populations of the Costa Rican *C. bruennowiana*, characterized by pendulous, lax pseudobulbs, could be treated as a distinct taxon, in which case they would correspond to *C. costaricensis*. It is clear that the identification of the Central American species of *Chysis* is in urgent need of a second taxonomic look (see Fowlie, 1971; Dressler, 2000).

6. *Cranichis nigrescens* Schltr., Repert. Spec. Nov. Regni Veg. 10(263–265): 482. 1912. TYPE: COSTA RICA. Ohne nähere Standortsangabe, A. Tonduz s.n. (holotype: B, destroyed; tracings of the original drawing of the holotype made under Schlechter’s supervision, selected here as the lectotype: [AMES 24414/barcode 00098427] [Fig. 13D]; illustration of the flower from the holotype published by Mansfeld, 1931: no. 24).

We were unable to find any specimen belonging to the original collection by Tonduz, and we therefore selected the drawing at AMES as the species’ lectotype. The drawing includes floral dissections and the plant habit, the latter of which was not published by Mansfeld (1931). The name is a synonym of *Cranichis diphylla* Sw., a species widespread in the Neotropics from Mexico to Peru and the Antilles, which can be recognized by the entire petals, the concave lip and the inconspicuous bracts of the stem.

No extant type material of the species is known to exist. The analytical drawings of the plant and the flower at AMES, based on one of the syntypes, bear no annotation of the collector’s name and the plant cannot be assigned with certainty to Tonduz or Wercklé. However, Pupulin (2010b) noted that the description of the plant in the protologue was likely prepared from a cultivated specimen, and this suggests the Tonduz specimen, cultivated in one of the properties of Amparo López-Calleja near Turrialba. A photograph of the lectotype is provided in Pupulin 2010b (Fig. 14A).

No actual original material studied by Schlechter remains, and the drawing made by Mansfeld, done nine years after Schlechter’s death, is not eligible for lectotypification. However, as the drawing requested by professor Ames to understand the concept of *Cycnoches tonduzii* is the only remaining evidence related to the type material, we propose to neotypify the species with this drawing.

The taxonomy of the genus *Cycnoches* is in great need of clarification about species circumscriptions. Dressler (2003) considered *C. tonduzii* a synonym of *C. warscewiczii* Rchb.f., a species shared by Costa Rica and western
Figure 14. A, Lectotype of Cycnoches amparoanum; B, Neotype of Cycnoches tonduzii; C, Lectotype of Elleanthus tonduzii; D, Lectotype of Epidendrum abbreviatum. A–B, D, courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College; C, courtesy of the Museo Nacional de Costa Rica, Departamento de Historia Natural.
Panama, while D’Arcy (1987) treats it as a synonym of *C. ventricosum* Bateman, originally described from Guatemala. Female flowers of other *Cycnoches* species in Costa Rica have general flower morphology quite similar to that drawn by Schlechter in his sketch of the type of *C. tonsduzii*, but stamine flowers also have a distinctly shorter column, while the gynostemium drawn by Schlechter belongs without doubts to a pistillate flower, which could only correspond in the concerned region to *C. warscewiczii*.

The isotype specimen at the herbarium of the Museo Nacional de Costa Rica is complete and fertile, and it is in excellent condition, so we selected it as the species’ lectotype. The isotype at AMES, even if smaller than the other isotypes, only including the apical portion of a stem, is particularly useful as one of its flowers was drawn and dissected by Schweinfurth for his studies on Central American orchids. The sheet also includes an ink drawing of the original plant mounted on Schlechter’s holotype. On another sheet at AMES, the tracings of Schlechter’s original drawing include the dissection of the flower, later published by Mansfeld in his compilation of Schlechter’s flower analyses of new orchids (Mansfeld, 1930).

Elleanthus tonsduzii is endemic to Costa Rica and western Panama, and living plants may exceed three meters in length in their natural habitat. The bright red to orange-red flowers on strongly ramified stems provided with narrow leaves make this species unmistakable.

Schlechter (1923) dedicated this species to Adolphe Tonduz as he knew that the researcher of the Costa Rican flora had recently passed away. It is a synonym of *Encyclia mooreana* (Rolfe) Schltr., originally described from several plants of cultivated origin, and Schlechter (1923) also described it another time with the name *E. brenesii* on the basis of another Costa Rican collection by Alberto Brenes.

The reflexed, olive-green sepals and petals stained with purple, and the violet-purple lip, with the suborbicular midlobe folding downward laterally and the lateral lobes that are basally narrow and wider at apex, easily distinguish this species. A photograph of the neotype is provided by Pupulin and Bogarín (2012: Fig. 4, 25).

Even though Schlechter (1923) cited the type of *E. abbreviatum* as a collection by Pittier and Tonduz, the number recorded in the protologues, 17618, unequivocally belongs to a collection by Tonduz alone. The photographs of the original sheets of the Botanical Museum of Berlin-Dahlem, conserved at AMES and chosen here as the species’ lectotype, clearly show that Schlechter received two specimens of this species from Costa Rica. The first, sent from the Instituto Físico-Geográfico Nacional in the last years of the nineteenth century, is a collection without locality and *sine numero* by Pittier and Tonduz, while the second is a plant collected by Tonduz at San Ramón in 1913, which was sent to the German specialist from the Museo Nacional de Costa Rica under the Museum’s number 17618. As the latter is the only number that Schlechter associated with the type in the protologue, it must be regarded as the holotype.

The name is the basionym of *Prosthechea abbreviata* (Schltr.) W.E.Higgins, a species easily recognized by the widely spaced, mostly diphyllous pseudobulbs, the inflorescence produced from a spathe and the almost flat lip.

In the absence of any actual specimens or other type material of this species, Santiago and Hágsater (2006) selected the copy of the type drawing at AMES, made under the supervision of Schlechter himself, as the lectotype (Fig. 15).

The name is a synonym of *E. pumilum*, based on a plant imported from Costa Rica and grown by Messrs. F. Sander & Co., of St. Albans. The small plants with verrucose stems and ovate, pustulose leaves, and the pale yellow flowers with a white lip, marked with a single, dark purple fleck, are unmistakable characters of this species.

Figure 15. Lectotype of *Epidendrum acrochordonium*, selected by Santiago & Hågsater (2006). Courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College.
Wäldern von Tablazo, ca. 1800 m, blühend im Apr. 1893, A. Tonduz s.n. (Herb. Instit. Costaric. no. 7950) (holotype: B, destroyed; isotype, selected here as the lectotype: BR 657366/barcode 00006573669 [Fig. 16A]; copy of Schlechter’s drawings of the holotype, AMES barcode 00070042).

Epidendrum tonduzii C.H.Lank., nom. nud.

The tracing of Schlechter’s drawing of the holotype, which were previously chosen as the species’ lectotype (Santiago and Hágsater, 2007), clearly illustrate the verrucose sheaths of the stem, the 4-lobed lip, the dorsally glabrous sepals, and the clinandrium longer than the free portion of the column, which are characteristic of the species. The existence of an isotype in BR, which is complete, fertile and in good condition, makes that lectotypification superfluous and supersedes it.

The name is synonym of Epidendrum endresii, originally described on the basis of a number of plants collected in Costa Rica by A. R. Endrész and F. C. Lehmann, and material cultivated by F. Sander. As previously discussed by Santiago and Hágsater (2007), the name Epidendrum tonduzii is nothing more than a simple lapsus calami by Charles H. Lankester (1879–1969) who, discussing some of his recent collections of Epidendrum, wrote the specific epithet of one of the species as “tonduzii” (surname) instead of “adolphii” (Tonduz’ given name, as used by Schlechter), giving in some way the impression of proposing a new species (Lankester, 1924). As Lankester never prepared a type for a plant that he was not willing to describe, and being aware of the identity of this concept with that of E. adolphii, Santiago and Hágsater (2007: sub pl. 931) proposed to neotypify E. tonduzii with the tracings of Schlechter’s original drawing of E. adolphii, which they also selected as the lectotype of the latter name (Santiago and Hágsater, 2007: sub pl. 931). This option, however, is expressly contrary to the provisions of art. 61.5 of the Code of Nomenclature (McNeill et al., 2012), which states, “Confusingly similar names based on the same type are treated as orthographical variants.” In Lankester’s paper (1924), Epidendrum tonduzii was published without any description or diagnosis, and the name is not referred to any former one, and we therefore consider that it should be simply treated as a nomen nudum.

Epidendrum barbeyanum was described on the basis of a plant originally collected in Costa Rica by A. Tonduz and sent as a living specimen to the Barbey-Boissier conservatory in Chambésy, near Geneva. A portion of the plant was prepared for study by Eugène Autran (1855–1912), a known botanist and entomologist who was the curator and an active collector of the Boissier Herbarium, where he also edited the Bulletin l’Herbier Boissier. Among his activities, he was in charge of the taxonomic identification of the large collections of living plants maintained by Pierre Edmond Boissier, his daughter Carolina and his son-in-law William Barbey. The collection had, by 1885, reached the respectable figure of over 4200 species, 772 of which were orchids (Autran and Durand, 1896). After receiving the plant from Autran in Gross-Lichterfelde, near Berlin, Kränzlin described it in September of 1895, mentioning its origin as “Costa Rica,” without specifying a locality and a date referable to the collection (Kränzlin, 1895a). A specimen of the same species, today conserved at the herbarium of National Museum in Costa Rica under the original number 1339 of the IFGN, was collected by Tonduz along the “haie d’un pâturage près San Juan” (hedge of a pasture near San Juan [correctly San José]), on September 28, 1889. Considering the times necessary to ship the plant to Switzerland, having it cultivated and flowered, and a dried specimen sent out to a specialist for determination, it is not improbable that the material eventually studied by Kränzlin was part of the same collection as the specimen kept at CR.

Reviewing the taxonomy of E. barbeyanum, Sánchez Saldaña and Hágsater (2006) refer to the holotype as a specimen conserved at G, also citing photographs of the type filed in the collections of the Harvard University Herbaria (AMES) and the Marie Selby Botanical Gardens (SEL). The photograph of the specimen was documented by J. Francis Macbride (1892–1976) in the context of his project, funded by the Rockefeller Foundation and based at the Field Museum of Natural History, aimed at photographing European herbarium specimens of nomenclatural types (F negative collection 25440). Interestingly, Macbride’s negative of E. barbeyanum is filed at F under the “Types of the Delessert Herbarium,” where it was probably never included, as the materials of this herbarium were presented to the City of Geneva by Delessert’s nieces, the baronesses of Hottinger and Bartholdi, as early as 1869 (Staples and Jacquemoud, 2005), while the herbarium Barbey-Boissier was donated to the Botanical Institute of the University of Geneva only in 1918, and its specimens were gradually incorporated in the Botanical Conservatory of the City from 1943 until 1975 (Jacquemoud, 2011).
Figure 16. A, Lectotype of *Epidendrum adolphii*; B, Neotype of *Epidendrum barbeyanum*; C, Holotype of *Epidendrum biflorum*; D, MacBride’s photography of the sheet with specimens of *Epidendrum barbeyanum*, taken at the herbarium of the University of Geneva, ca. 1936–1937. A, courtesy of the Herbarium, Botanic Garden Meise; B–C, courtesy of the Herbarium, Conservatoire et Jardin botaniques de la Ville de Genève; D, courtesy of the Field Museum, Chicago.
The photograph by James Francis Macbride (Fig. 16D), which was taken in late 1936 or early 1937 (Field Museum of Natural History, 1937), when the sheet was still conserved at the University of Geneva, unequivocally shows several specimens mounted on a single sheet, the earlier of which prepared on October 1895, posterior to the date of the original description. A second label on the same sheet provides information about the original collecting locality (“Bords du Virilla près San José. Costa Rica. Tonduz”) but it is dated October 1897, and this confirms that the stems with flowers mounted on the sheet were prepared at different times, albeit from the same living specimen. Evidently, Autran was conscious of the value of the original plant on which Kränzlin based its description of E. barbeyanum, and prepared several specimens from what we could today consider the “clonotype,” even though this category has no meaning in botanical nomenclature.

At the herbarium of the Conservatoire et Jardin botaniques de la Ville de Genève, where they are kept today, the specimens are mounted on two sheets, the first one (G00420236) including the parts flowered in October 1895, and the second one (G00428338, Fig. 16B) the gatherings of October 1897. According to the provision of Art. 9.3 of the Code of nomenclature (McNeill et al., 2012), neither the actual specimens nor their photograph are eligible for lectotypification, as for nomenclatural purposes the definition of “original material” is limited to those specimens and illustrations that were unpublished and published either prior to or together with the protologue. The additional fact that the sheet photographed by Macbride is not annotated in Kränzlin’s handwriting, supports our view that these specimens were never seen by the author of the species.

As Tonduz’ specimen at CR is sterile, we choose to neotypify the species with the specimen prepared in Switzerland in October 1897 (Fig. 16B), as it was ostensibly prepared, though at a different date, from the same specimen cultivated in the greenhouses of La Perrière and sent to Kränzlin for determination, on which he described E. barbeyanum. The selected neotype is more complete than the specimen prepared on October 1895, as it includes a flattened, ancipitous stem covered by broadly loose leaf-sheaths, narrower at the base and broadening toward the apex, the elliptic leaves and large flowers with a broad, tri-lobed lip and a reduced clinandrium, which are typical of the species.

Epidendrum barbeyanum was also described by Schlechter as _Epidendrum amparoanum_, based on a collection by Karl Wercklé from the heights of San Jerónimo, not far from San José. As discussed by Pupulin (2010b), no specimens or any other material associated with Schlechter’s protologue exist, and the species is awaiting neotypification.

Synonym: _Epidendrum boissierianum_ Schltr., replacing name.

Alfred Cogniaux described _E. biflorum_ on the basis of a plant originally sent by Tonduz from Costa Rica and cultivated in the greenhouse of Madame Barbey at Chambézy, where it flowered for the first time at the end of 1901. Cogniaux’ description was published the following year in the bulletin of the Boissier herbarium (Cogniaux, 1902). At the time of its publication, the name was however predated by _Epidendrum biflorum_ Ruiz and Pav. (1798), based on a collection from Tarma, in central Peru. In 1918, Schlechter created for it the substitute name _Epidendrum boissierianum_.

The holotype at G includes the apices of two stems, each with a single flower, plus a copy of the original illustration drawing prepared by Cogniaux and published in the bulletin of the Boissier Herbarium.

The name is a synonym of _Epidendrum sculptum_ Rchb. f. (1854), a broadly distributed species ranging from Mexico to Ecuador and the Guyanas, originally based on a collection by C. F. Lehmann from Chagres in Panama. The specimen presented in the lectotype illustration, based on a cultivated plant, is erect, but in its natural habitats _E. sculptum_ typically grows as a pendent epiphyte.

As we discussed in the introductory chapter on the enumeration of Tonduz’ specimens, the quote of Pittier 9519 in the protologue (and, consequently, on the copy of Schlechter’s drawing of the type) represents a misunderstanding of the numeration system used at the IFGN. Even though the duplicates at BR and US bear the name of Tonduz as the collector, they belong to the same type collection and have to be considered as isotypes. The isotype at CR, which we selected as the species lectotype, is complete, fertile, and in excellent condition.

The rhizomatous habit with scendent rhizome and stems produced far apart from each other, the ancipitous, short inflorescence and the small flowers with the part of the perianth less than 1 cm long distinguish this species, broadly distributed from Mexico to the northern portion of the Andes.

in 1500–1600 m., May 1913, A. Tonduz s.n. (Museo Nacional de Costa Rica 17622) (holotype: Z, 6823/barcode 000016397, and Z 6823/barcode 000016398 [Fig. 17C]; isotypes: AMES 22101/barcode 000070199; BM 000026897; G 00168665; P 651-123-60/barcode 00438711; US 1080677/barcode 00075623).

The type of Epidendrum chondranthum is one of the last Costa Rican orchid collected by Tonduz, under the number 17622 of the Museo Nacional de Costa Rica. Even though the labels on the holotype and the isotypes only indicate the month of May 1913 as the collecting date, the type of Epidendrum majale, collected in the same locality and with a few numbers lower, was gathered on May 13, 1913.

The holotype at the Zürich herbarium is mounted on two sheets, which received two different barcode assignations, but the original accession number of the herbarium (no. 6823) is the same for the two sheets, which is permissible under the provisions of the Code of nomenclature (Art. 8.3. “A specimen may be mounted as more than one preparation, as long as the parts are clearly labeled as being part of that same specimen”) (McNeill et al., 2012). Both the sheets are annotated by Kränzlin, with the indication “Typus” in his handwriting (Fig. 17C).

The name is a synonym of Epidendrum exasperatum Rchb.f., a common epiphyte of the montane forests of Costa Rica, originally based on a plant collected in Costa Rica by H. Wendland in 1857. The species is recognized by its 4-lobed lip and the non-verrucose leaf sheaths (which are quite atypical in the Oerstedella group of Epidendrum), and the inflorescences produced both apically and laterally.

18. Epidendrum falcatum var. zeledonae Schltr., Repert. Spec. Nov. Regni Veg. Beih. 19: 37. 1923. TYPE: COSTA RICA. Auf Magnolia im Garten de Mdme. Amparo de Zeledon; blühend in Januar 1921, A. Tonduz 132 (holotype: B, destroyed; lectotype designated by H. Wendland in 1857). Schlechter (1923: 37) distinguished var. zeledonae from the typical form of E. falcatum by the slender habit, the longer, narrower and thinner leaves, and the smaller flowers, commenting about the similarity of this taxon with E. parkinsonianum Hook. The drawing of the type conserved at AMES (Fig. 17B) well illustrates the habit and flowers of the species, which is today treated as a synonym E. parkinsonianum Hook., characterized by the pendent habit with slender stems, which are apically provided with a single, succulent leaf, and the large flower with a deeply trilobed lip.

Both the illustration of the flower from one of the syntypes published by Mansfeld (1931), and the tracings of the same syntype made for Professor Ames under Schlechter’s supervision, are based on Pittier 2176, and for this reason we consider it advisable to lectotypify the species with this collection instead of the extant specimens gathered by Tonduz. Among the extant isosyntypes, the specimen at US (Fig. 18A) is complete and fertile, and it was studied and annotated by Ames, Hubbard and Schweinfurth for their monograph on the genus Epidendrum (Ames et al., 1936).

Even though in the protologue Schlechter (1906) cited the type as a collection by Pittier number 2176, this number was in fact an herbarium accession number assigned to this collection by the Institute/Museum, which were temporarily merged at that time. Whilst the lectotype sheet, as well as the isollectotypes at BR and P, bear an original label of “H. PITTIER and TH. DURAND/Plantae costaricensis exsiccatae,” where number 2176 is associated with a collection by Pittier, the original label of the sheet at CR belongs to Costa Rican National Museum, where the same number 2176 was associated with a collection of the same species, and made at the same date, by Tonduz.

Epidendrum henrici is here considered a synonym of the common and widespread Prosthechea livida (Lindl.) W.E.Higgins, based on a Colombian type, distinguished by the trilobed lip with three rows of verrucose and deeply retuse keels, and obtuse lateral lobes.

Synonym: Epidendrum palmense Ames., replacing name.

When describing the species, Ames (1922) used the epithet magnibracteatum, omitting the fact that Kränzlin had used it before for another Epidendrum from Colombia (Kränzlin, 1920). Shortly after, he noticed the error and in the second volume of its Schedulae Orchidianae for 1923 he proposed for the species the new name Epidendrum palmense (Ames, 1923). The specimen at AMES was mistakenly labeled with a collection date “VII.1885,” a date that precedes by four years the arrival of Tonduz in Costa Rica.

Epidendrum palmense belongs to a taxonomically difficult group of species characterized by the strongly
FIGURE 17. A, Lectotype of Epidendrum cardiporum; B, Lectotype of Epidendrum falcatum var. zeledoniae, selected by Hágsater & Salazar (1990); C, Holotype of Epidendrum chondranthum (two sheets). A, courtesy of the Museo Nacional de Costa Rica, Departamento de Historia Natural; B, courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College; C, courtesy of the Zürcher Herbarien, University of Zurich.
Figure 18. A, Lectotype of Epidendrum henrici; B, Holotype of Epidendrum magnibracteatum; C, Lectotype of Epidendrum majale; D, Lectotype of Epidendrum octomeroides. A–C, courtesy of the United States National Herbarium, Smithsonian Institution; D, courtesy of the National Botanic Garden of Belgium Herbarium.
flattened stems, prominent flower bracts, and very fleshy, green to purple-flushed flowers. Among the taxa of this group, *E. palmense* may be distinguished by the long, acuminate floral bracts, the petals connate to the upper margin of the lateral sepals, and the rhinophor.lip.

Collected on the way back from the expedition of Maurice de Périgny to the northern plains draining toward the Río San Juan, at the border between Costa Rica and Nicaragua, the type of *E. majale* belongs to the last group of Costa Rican orchids collected in the field by Tonduz. The lectotype at US (Fig. 18C) illustrates well the characteristics of the species, with rather small habit compared to other species of the *Epidendrum difforme* complex, the apical, subsessile and non-spathaceous inflorescence, the filiform petals and the entire lip.

Epidendrum majale is a synonym of *Epidendrum firmum* Rchb.f., a common species in Central America from Nicaragua to Panama, originally described on the basis of a plant collected in Costa Rica by H. Wendland in 1857.

22. *Epidendrum octomerioides* Schltr., Repert. Spec. Nov. Regni Veg. 3: 248. 1907. TYPE: COSTA RICA: In Wäldern bei Teus (Taus), c. 650 m ü. d. M., blühend im November 1897, A. Tonduz s.n. (Herb. Instit. physico-geogr. nat. costaricensis 11378) (holotype: B, destroyed; isotype, selected here as the lectotype: BR barcode 0000016153516 [Fig. 18D]; tracings of the original illustration of the holotype made under Schlechter’s supervision: AMES barcode 00070636; illustration of the flower from the holotype published by Mansfeld, 1931: no. 211).

The isotype at BR that we selected as the species’ lectotype, is complete and fertile, and it well illustrates the repent habit with the new, cylindrical stem coming form the middle of the last stem, the roots coming from the basal nodes, and the small, apical flowers produced on a very short inflorescence. The sheet of the isotype is annotated in Schlechter’s handwriting, with the intended name “Epidendrum leptotifolium,” evidently in allusion to the shape of the leaves reminding those of the orchid genus *Leptotes*.

Two copies of Schlechter’s original drawing of the type of *E. octomerioides* were made: one published by Mansfeld (1931), and another one requested by Oakes Ames and made under Schlechter’s direct supervision, now saved at the Harvard University Herbaria. Both illustrations include a floral analysis, but the latter also presents the unmistakable plant habit that is very characteristic of *E. octomerioides*. *Epidendrum octomerioides* is widely distributed in both the Caribbean and the Pacific watershed of the Costa Rican cordilleras, from low to mid elevations.

The specimens at US are sterile, and only a few broken fragments of the flowers are conserved into the pocket of the sheet that we selected as the species’ lectotype. The characteristics of the perianth were recorded by Schlechter in his drawing of the holotype, a copy of which was prepared in Berlin for Professor O. Ames and is now conserved at the Harvard University Herbaria.

Originally collected in the strongly seasonal regions of the Nicoya peninsula, this widespread species is the only large-flowered *Prosthechea* forming natural populations in the dry, semi-deciduous forests of northern Pacific Costa Rica. The ovoid pseudobulbs, the partially ringent flowers, and the subacute lip with plain margins, which are well illustrated in the copy of Schlechter’s drawing of the holotype (AMES), easily distinguish the species from its closest relatives (Pupulin and Karremans, 2007).

The name is a synonym of *Prosthechea chacoensis* (Rchb.f.) W.E.Higgins.

The isotype specimen at US, of which that at AMES is a fragment, bears a label with the number 12492 of the “Herb. H. Pittier, Costa Rica” which is not cited in the protologue, while the isotype at K has a label with the correct number of the IFGN, as quoted by Schlechter in the original description. It is obvious that all three specimens are part of the same Tonduz’ collection of August 24, 1898 from La Palma, but we choose to lectotypify the species with the specimen at Kew as it better corresponds to the citation of the type by Schlechter.
FIGURE 19. A, Lectotype of Epidendrum pachycarpum; B, Lectotype of Epidendrum polychlamys; C, Holotype of Epidendrum sanctiramoni; D, Analytical drawing of Epidendrum trachythecce, traced by Mansfeld (from Mansfeld 1931). A, courtesy of the United States National Herbarium, Smithsonian Institution; B, courtesy of the Board of Trustees, Royal Botanical Gardens, Kew; C, courtesy of the Zürcher Herbarien, University of Zurich.

Barringer (1991) lectotypified E. sancti-ramoni with a specimen kept at the Oakes Ames Herbarium at the Harvard University Herbaria (specimen number 22654), in the belief that the actual holotype was destroyed in Berlin together with most of Kränzlin’s types. However, Kränzlin studied the type specimen of this species in the herbarium of the University of Zürich, where it is still conserved and annotated as “Typus” in Kränzlin’s handwriting (Fig. 19C). Kränzlin published the new species he studied in Zürich in the Vierteljahrschrift der Naturforschenden Gesellschaft in Zürich, the quarterly journal of the Zurich Natural History Society (Kränzlin, 1929), together with another Epidendrum species whose type is kept in the same herbarium, E. chondrantum (see above). As Tonduz’ specimen in Zurich is ostensibly that on which Kränzlin based his description, it has to be considered the holotype, and the lectotypification proposed by Barringer is here superseded. In the collections of Zurich herbarium another Tonduz’ specimen of the same species is conserved (Z 000016395), but this was not annotated by Kränzlin.

Epidendrum sancti-ramoni belongs to the Epidanthis group of Epidendrum (Barringer, 1991), characterized by the small plants with narrow leaves less than 3 mm broad and small flowers produced on a comparatively long inflorescence without a basal spathe. Within this group, E. sancti-ramoni is distinguished by the acicular leaves and the three-lobed, very small lip, not exceeding 2 mm in length.

Schlechter (1907) described E. trachythece on the basis of a plant collected by Tonduz in the mountains that divide San José from the plains of the old capital city, Cartago. As no dried material referable to this collection has been conserved, Sánchez and Hágsater (2008) neotypified the species with a modern collection from the type locality. We think, however, that the illustration published by Mansfeld (1931) (Fig. 19D), being an exact tracing of Schlechter’s original analysis of a flower from the holotype, would have been a firmer choice for neotypification.

Broadly distributed in Central America from Mexico to Panama, E. trachythece is a small epiphyte having many-branched, diphylous stems and few-flowered, terminal inflorescences; the small, greenish-white flowers have a characteristic transversely elliptic-subreniform lip, provided with a bi-partite, obtuse callus at the base.

The drawing of the type specimen, showing the long inflorescence typical of the genus and the dissected perianth, is chosen here as the lectotype, as no other type material of Goodyera ovatilabia was found. Originally collected in the surroundings of the county of Turrialba, Goodyera ovatilabia is one of the few species of Goodyera known to occur in Costa Rica, and most probably the only one to be found growing in the oak tree forests as high as 3,000 m on the Caribbean slopes. The species is also known from western Panama.

As mentioned by Dressler (2003), G. ovatilabia resembles the Mesoamerican G. striata Rchb.f. by the similar minute pale flowers with a deeply concave lip. Nevertheless, the plants of G. ovatilabia are much smaller (3–5 cm vs. up to 35 cm long) and distinguished by the acute entire lip.

No other type material of the species than the holotype destroyed in Berlin is known to exist. The tracings of the original drawings by Schlechter illustrate the habit well with an inflorescence and the details of the perianth, and they are therefore chosen here as the lectotype. Goodyera turialbae was originally collected in the Turrialba volcano and is known only from Costa Rica.

The species is similar to G. micrantha but is distinguished from it for the bigger flowers; the broadly cuneate leaves, not rounded at the base and the glabrous ovary.

FIGURE 20. Lectotype of *Goodyera ovatilabia*. Courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College.
Figure 21. Lectotype of *Goodyera turialbae*. Courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College.
the holotype, made under Schlechter’s supervision: AMES 00024305/barcode 0099764; illustration of the flower from the holotype published by Mansfeld, 1931: no. 2).

Christenson (1996) selected the specimen at US over the one supposedly kept at CR because the former was studied, illustrated and annotated by Oakes Ames for his monographic study of Habenaria (Ames, 1920, 1943). Nevertheless, we were unable to find any reference to a collection by Tonduz in the Herbarium of the Museo Nacional de Costa Rica and the associate databases. The lectotype (Fig. 22A) is complete and fertile, and well exemplifies the plant with a foliaceous stem, flower provided with a relatively short, upwarding spur, which are characteristic of the species.

Habenaria costaricensis is endemic to the Pacific watershed of the main Costa Rican cordilleras.

No actual specimens of the original collection have been found. The copy of Schlechter’s original drawings of the holotype are selected as the lectotype as they well illustrate the plant with slender, foliaceous stem and narrow, erect leaves, bearing a few flowers with deeply trilobed labellum, provided on the rear with a long spur.

The species is usually treated as a synonym of Habenaria trifida Kunth, widespread throughout the entire Neotropical region, from Mexico to Brazil and Argentina.

31. Habenaria gymnadenioides Schltr., Repert. Spec. Nov. Regni Veg. Beih. 19: 271. 1923. TYPE: COSTA RICA. Ohne nähere Standortsangabe, A. Tonduz s.n. (holotype: B, destroyed; lectotype, selected here as the lectotype: AMES 31632/barcode 00099863 [Fig. 22C]).

In the absence of any specimens referable to the type collection, we selected here as the species lectotype the tracings of Schlechter’s original drawings of the holotype. The relatively small plants (to 25 cm tall), with the upper part of the stem bearing a few leaves, the densely many-flowered inflorescence, and the deeply tri-lobed labellum, with the lateral lobes subequal to the midlobe, which Schlechter (1923) considered characteristic of the species, are well illustrated in the lectotype.

The species has been treated by Dressler (1999, 2003) and Pupulin (2002) as a synonym of Habenaria wercklei Schltr., a species ranging from Honduras to Costa Rica.

In the protologue, Schlechter (1923) cited Tonduz 32 and Wercklé 83, without expressly indicating the type. No original material of these collections is known to exist, and the copies of Schlechter’s drawings of the type kept at AMES have no indication about the collector. However, as these drawings were ostensibly prepared from one of the syntypes and are annotated as “type,” they were selected as the species’ lectotype (Pupulin, 2010b). The name is probably a synonym of Isochilus chiriquistens Schltr.

On the holotype sheet at US, which bears the original label of the IFGN herbarium, are mounted three specimens, only one of which still has a single bud (Fig. 22D). The isotype at AMES (Fig. 22A) is sterile, but nonetheless it has an original drawing by Ames showing the long-ciliate-pubescent petals and labellum, and the long, bilobed appendix of the lip, which distinguish the species.

34. Masdevallia tonduzii Woolward, Bull. Herb. Boissier, sér. 2, 6(1): 82. 1906. TYPE: COSTA RICA ("Hab. Costa Rica"). 1894. In hortum Chambesiensis (Helvetia), quotannis floret, A. Tonduz s.n. (holotype: BM000084394 (?); isotype: G 005915-000346/barcode 00168757 [Fig. 23C]).

The plant that served as the type for Masdevallia tonduzii was collected in 1894, during the herborizations carried out along the basin of the Reventazón river, on the Caribbean watershed of the Cordillera de Talamanca, which Tonduz explored down to the outpost of the Angostura, where the path reached its end point in the impenetrable vegetation of the Atlantic rainforest (Tonduz, 1896). Masdevallia tonduzii can be still observed as a rare epiphyte endemic to this region, down to the warm, Caribbean forest of western Panama. It was not until 1900 when a specimen prepared at La Perrière from the plant received from Costa Rica was sent to Florence Woolward (1854–1936) for her studies on Masdevallia. The last part of Woolward’s magnum opus on the genus had been published just a few years before (Woolward, 1896), and no illustration of the species was included with the original description of M. tonduzii (Woolward, 1906). As noted by Mrs. Woolward, M. tonduzii flowered “every year” in the Barbye-Boissier greenhouse at Chambésy (Woolward, 1906), and according to Jenny (2015) the type plant remained in cultivation in Switzerland at least until 1910.

Beginning in 1890, F. Woolward spent some ten years on visits to Newbattle Abbey, in Scotland, painting orchid flowers from the extensive collection of Schomberg Kerr, Marquess of Lothian. Here the illustrator depicted more
FIGURE 23. A, Isotype of Lepanthes fimbriata; B, Lectotype of Maxillaria microphyton; C, Isotype of Masdevallia tonduzii; D, Possible holotype of Masdevallia tonduzii. A, B, courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College; C, courtesy of the Conservatoire et Jardin botaniques de la Ville de Genève; D, courtesy of the Natural History Museum, London.
than 350 orchids, of which 85 were species of Masdevallia. These latter were published in parts between 1891 and 1896 as "The Genus Masdevallia." The pressed flowers from Newbattle Abbey are preserved at the Natural History Museum in London, where Woolward worked on completion of the project for Schomberg. Interestingly, in the herbarium collections of the Natural History Museum (BM) is conserved a specimen of *M. tonduzii*, gathered on November 11, 1905, just a year before the publication of the new species in the bulletin of the Boissier herbarium. The specimen at BM (000084394; Fig. 23D) is recorded as a collection *sine numero* by J. O’Brien (1842–1930), a renowned orchid specialist of the time and secretary of the Orchid Committee of the Royal Horticultural Society (Natural History Museum, 2014). As it is doubtful that living plants of the rare *M. tonduzii* were in cultivation in England at that time, it might well be that the specimen deposited by O’Brien was indeed the true plant studied by F. Woolward upon the request by G. Beauverd.

The type specimen at G consists of just a leaf and an inflorescence with a flower. It has no handwritten annotations by Miss Woolward, so it could hardly be considered the exact specimen on which the author prepared her description, and it is quite improbable that Woolward would have sent back to Geneve her specimen from London, where she worked, or from Belton, in Lincolnshire, where she lived. According to the original label affixed to the sheet, however, G. Beauverd prepared it at the same time (December 7, 1900) of the specimen sent to Miss Woolward for determination, and it can therefore be considered as an isotype (and eventually selected for species lectotypification if the BM specimen was not suitable for this purpose).

The thick, oblong-lanceolate leaves, the erect, single-flowered inflorescence, and the pubescent, white flower with a lemon-yellow gorge and bright yellow tails, all characters noted in the protologue, made this species unmistakable among Costa Rican *Masdevallia*.

The isotype at US, selected here to lectotypify the species, includes a fertile plant and the sketch of a rehydrated flower, made by J. T. Atwood during the preparation of his treatment of Costa Rican *Maxillaria* for the *Flora Costaricensis* (Atwood, 1999).

The species, endemic to Costa Rica, is easily distinguished from its relatives by the non-reflexed lip, provided with lateral lobes that exceed in length the extension of the central callus. The description of *Ornithidium parvulum* made by Schlechter (1923) is based on the same type collection of *Maxillaria microphyton*, which made it a superfluous, illegitimate name.

36. **Maxillaria pachyacron** Schltr., Repert. Spec. Nov. Regni Veg. 9(205–207): 165. 1911. TYPE: COSTA RICA. in den Wäldern von La Palma, 1700–2000 m, blühend im Juli 1895, A. Tonduz 9681 (holotype: B, destroyed; tracings of Schlechter’s drawings of the type, designated here as the lectotype: AMES 24781/barcode 00101468, in part [Fig. 24A]; epitype, designated by Atwood (1999): COSTA RICA. La Palma, S. Ingram & K. Ferrell 770 [SEL]).

The collections of the Smithonian host a specimen of *Maxillaria* (577273/barcode 00094047) that bear a label of *Tondz 9681*, but Atwood showed that the mounted plant is not in agreement with the original protologue, having a rhizomatous habit and much smaller flowers, with a very different lip (Atwood, 1999).

As typified by Atwood, *M. pachyacron* is distinguished by the presence of foliaceous sheaths subtending the pseudobulbs, the green (non-spotted) leaves, the floral bract shorter than the ovary, the long column foot, and the long sepals up to 5 cm in length.

John T. Atwood typified *M. piestopus* in his treatment of *Maxillaria* for *Flora Costaricensis* (Atwood, 1999). In absence of actual material of this taxon, Atwood chose to neotypify with a collection by Lankester kept at AMES (Fig. 24C). According to the label of the Ames herbarium, the plant was collected at Orosi, but probably it was just cultivated there. On the sheet of the neotype there is another label in Lankester’s handwriting that apparently quotes the name of Brenes, which led us to suppose that the specimen was originally collected in one of the typical Brenesian localities around San Ramón, the type locality for the species. Even though Atwood did not cite it, at the AMES herbarium is also conserved a photograph of the holotype taken in Berlin, which clearly shows the habit of the plant with a single flower, and also includes the original sketch of the flower and its dissection prepared by Schlechter (Fig. 24B).

Maxillaria piestopus belongs to a group of species with pseudobulbs subtended by non-foliaceous sheaths, and
is distinguished by the oblanceolate leaf, the large floral bracts, the triquetrous ovary, and the oblongate petals. Atwood (2003) considers M. piestopus as a little known and possibly extinct species.

38. *Microstylis adolphi* Schltr., Beih. Bot. Centralbl., Abt. 2 36(2): 380–381. 1918. TYPE: COSTA RICA, Alto de la Cruz, A. Tonduz s.n. (holotype: B, destroyed; illustration of type, made under Schlechter’s supervision, and selected here as the lectotype: AMES 24378/barcode 00101595 [Fig. 25A]; illustration of the flower from the holotype published by Mansfeld, 1931: no. 53).

No actual material referable to the type of *M. adolphi* is known to exist. We chose to typify the species with the drawing conserved at AMES over the floral analysis published by Mansfeld (1931), as it includes also the plant habit, which is characteristic of the species.

The species, known exclusively by the type and from a rather cryptic locality, is distinguished by the pseudobulbous stems, apically two-leaved, and the truncate to slightly retuse apex of the lip.

The name is the basionym of *Malaxis adolphi* (Schltr.) Ames (Orchidaceae 7: 158. 1922).

Microstylis microtoides is known exclusively from the tracings of Schlechter’s original drawing of the type from which the species was published by Mansfeld in 1931, and that we selected to neotypefy the species.

According to the floral analysis, *M. microtoides* is similar to the widespread *M. carnosa* (Kunth) C.Schweinf., which presents a clearly three-lobed, concave lip, provided with rounded, thickened lateral lobes. The inflorescence of the latter species is commonly described as spicate, even though the flowers are born on short pedicels. Schlechter described the inflorescence of *M. microtoides* as an elongate raceme, but characterized it as densely many-flowered, and gave the length of the pedicel plus ovary as 1.7 mm. It is unfortunate that the drawing published by Mansfeld does not show the vegetative habit of *M. microtoides* to interpret Schlechter’s observation, but a dense inflorescence with short-pedicelled flowers must be difficult to distinguish from “spicate” inflorescence of *M. carnosa*, and we agree with Schweinfurth (1941) in considering the two taxa conspecific. The lack of any specific locality quoted in the protologue makes the chances to search for other specimens of this elusive taxon quite feeble. Schlechter compared it with *M. gracilis* (= *Malaxis cogniauxiana* [Schltr.] Pabst), but the latter species, endemic to Brazil, has bifoliate stems and subcapitate inflorescence.

40. *Microstylis pandurata* Schltr., Repert. Spec. Nov. Regni Veg. 3(31–32): 77. 1906. TYPE: COSTA RICA. in den Wäldern bei La Palma, ca. 1450 m, blühend am 31 Aug 1898, A. Tonduz 12508 (holotype: B, destroyed; isotype selected here as the lectotype, a flower conserved in glycerine: AMES barcode 00083007; tracings of the original drawings of the type, made under Schlechter’s supervision: AMES 24148/barcode 00101732; illustration of the flower from the holotype published by Mansfeld, 1931: no. 60).

The flower conserved in glycerine at AMES is the only known actual specimen belonging to the original collections, and for this reason we designated it as the species’ lectotype. *Microstylis pandurata* is unmistakable for the subquadrate lip of the flower, broader at apex than at the base. The copy of Schlechter’s original drawing of the type also illustrates the characteristic, monophyllous habit of the species (Fig. 25C).

The name is the basionym of *Malaxis pandurata* (Schltr.) Ames (Proc. Biol. Soc. Wash. 35: 84. 1922).

No material referable to the type of *M. tonduzii* has been located. A tracing of Schlechter’s floral analysis was published by Mansfeld (1931), but the drawing conserved at AMES also includes the plant habit, and therefore we chose it to lectotypify the species.

The leaf petioles embracing the base of the inflorescence distinguish this species among the rhizomatous *Malaxis* in Costa Rica, where it is endemic. The name is the basionym of *Malaxis tonduzii* (Schltr.) Ames (Proc. Biol. Soc. Wash. 35: 85. 1922).

The large plants with paniculate inflorescences bearing short, few flowered branches, and the relatively small flowers with subquadrate wings of the column distinguish this species.

The name is a synonym of *Oncidium polycladium* Rchb.f. ex Lindl., endemic to the Pacific regions of central and southern Costa Rica and western Panama.

FIGURE 25. **A**, Lectotype of *Microstylis adolphi*; **B**, Neotype of *Microstylis microtoides*; **C**, Tracings of the original drawing of type of *Microstylis pandurata*; **D**, Lectotype of *Microstylis tonduzii*. All by courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College.

The lectotype selected by Christenson (1996) is complete, and it still has a few remaining flowers in the mid portion of the inflorescence (Fig. 26B). It is not in perfect agreement with the protologue (Schlechter, 1910), which quotes the collector as P. Bioley, but according to our understanding of the IFGN system of specimens accession (see the introductory chapter on the numeration of Tonduz’ specimens), both “Herb. Instit. physic-geogr. nat. costaricensis/Nº. 8423/Legit A Tonduz,” and “Nº 8423/legit H. Pittier,” have to be considered as isotypes, even though the names of Tonduz and Pittier are not quoted as such in the original description.

The analyses of the flowers mounted on the specimen “Nº 8423/legit H. Pittier” (US), drawn by J. T. Atwood in preparation of the Oncidium treatment for Flora Costaricensis (Atwood and Mora-Retana, 1999), perfectly correspond with the floral analyses prepared by Schlechter and traced for Professor Ames (AMES), as well as those published by Mansfeld (1931).

Mora-Retana (1999) treated O. turialbae as a synonym of O. stenotis Rchb.f., a broadly distributed species from Honduras to Ecuador and Peru, common in the Atlantic lowland forests of Costa Rica.

The isotype selected by Atwood (1994) as the species’ lectotype is an apical portion of an adult plant, and it is fertile. The lectotype sheet also bears Atwood’s analysis of a rehydrated flower from the isotype (Fig. 26C) for his studies on Costa Rican Maxillaria. The other isotype at US, which includes several fertile cane-like stems, has a label bearing an intended name by Schlechter, and never published, “Camaridium palmac,” named from the type locality.

The species, endemic to Costa Rica and Panama, is easily distinguished from other taxa of the Camaridium group by the foliaceous bracts subtending the pseudobulbs, the short column (<6 mm long), and the terete ovary.

When Maxillaria is considered in its broad sense, the species has to be treated as M. bracteata (Schltr.) Ames & Correll (Bot. Mus. Leafl. 11(1): 14–15. 1943). When a narrower circumscription of Maxillaria is favored, Ornithidium bracteatum correctly belongs to the genus Camaridium Lindl. (see Blanco et al., 2007) and should be treated as C. bracteatum (Schltr.) Schltr. (Repert. Spec. Nov. Regni Veg. Beih. 19: 57. 1923).

When accepting a narrower circumscription of Maxillaria and the closely related genera, as proposed by Whitten et al. (2007) and Blanco et al. (2007), the species described by Schlechter belongs to Camaridium, a genus of some 80 taxa characterized by floral bracts longer than the pedicel and ovary, which overlap with the base of the dorsal sepal, and sepals and petals without fiber bundles. Schlechter (1923) first recognized the affinities of his O. tonduzii with Camaridium, and created the new name Camaridium adolphi to accommodate it, as the specific epithet tonduzii was already occupied in Camaridium by C. tonduzii Schltr. (Schlechter, 1910), an illegitimate name based on the same type as C. costaricense Schltr. (1907), Adamanthus tonduzii (Schltr.) Szlach. & Sitko and Maxillaria adolphi (Schltr.) Ames & Correll are both based on Tonduz 10770, and they must not to be confused with M. tonduzii Ames & Correll, which is a replacing name for Camaridium costaricense Schltr. instead.

Atwood (1999) designated the specimen at US (Fig. 26D), which is complete and fertile, as the species’ lectotype. Interestingly, it bears both the IFGN label that ascribes the collection to Tonduz, and another label indicating that the collections was made by “H. Pittier & Tonduz.” At the Herbarium of the Museo Nacional de Costa Rica is kept another specimen of this species collected by Tonduz on the Pacific slopes of the Barva volcano in February 1890 (Tonduz s.n., CR 2083).

46. Ornithocephalus tonduzii Schltr., Beih. Bot. Centralbl., Abt. 2 36(2): 420. 1918. TYPE: COSTA RICA. A. Tonduz s.n. (holotype: B, destroyed; isotype, selected here as the lectotype: US 938677; isotypelectotype: US 577310; tracings of Schlechter’s original drawings of the holotype: AMES 24167/barcode 00102717 (Fig. 27A); illustration of the flower from the holotype published by Mansfeld, 1931: no. 306).
FIGURE 27. A, Tracings of the original drawing of the holotype of *Ornithocephalus tonduzii*; B, Lectotype of *Pittierella calcarata*; C, Lectotype of *Pleurothallis costaricensis*; D, Lectotype of *Pleurothallis lyroglossa* designated by Luer (2000). All by courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College.
Charles Schweinfurth (manuscript note at AMES, 1934) considered *O. tonduzii* closely allied to *O. elephas* Rchb.f., but in the latter species (according to Reichenbach’s drawing of the type), the lobes of the basal callus are erect, instead of spreading as in *O. tonduzii*. It is probably near, if not conspecific with, *Orothophonoechus inflexus* Lindl., with which it shares a broadly cordate callus at the base of the lip, but with a proportionately longer blade, that is distinctly upcurved-hooked apically. Several authors, however, treat *O. inflexus* (based on a Mexican collection by Hartweg) as a synonym of *O. gladiatus* Hook., whose type is a collection by H. Crueger from Trinidad. Toscano de Brito and Dressler (2000) considered *O. tonduzii* a good species, endemic to Costa Rica and Panama, and distinct from their *O. numenius*, only known from Nicaragua and Honduras; they offer, however, no information on how to distinguish these closely related taxa.

47. **Pittierella calcarata** Schltr., Repert. Spec. Nov. Regni Veg. 3(31–32): 81. 1906. TYPE: COSTA RICA. In den Wäldern von La Palma, 1700–2000 m, blühend im März 1895, A. *Tonduz* 9682 (holotype: B, destroyed; lectotype, designated here: tracings of Schlechter’s original drawings of the holotype, AMES 24793/barcode 00103194). Fig. 27B.

The tracings of the holotype made in Berlin, which we choose to lectotypify the species, well illustrate the unequal apical leaf lobes, the inflorescences of few internodes with tubular bracts that characterize the species.

Schlechter (1906) described *P. calcarata* as the type species of his genus *Pittierella*, which he considered a “singular,” ebulbose plant to be compared with *Phreatia* Lindl., an unrelated orchid group native of Southeast Asia. A few years later, in describing *Cryptocentrum minus*, Schlechter (1912) intended publishing a new combination in *Cryptocentrum* Benth. & Hook. for his *Pittierella*, but he involuntarily referred to it as *Pittierella costaricensis*, a name never published (*nomen nudum*), and therefore also his *combinatio nova*, *Cryptocentrum costaricensum*, has to be treated as a *nomen nudum* without botanical standing.

The name is the basionym of *Cryptocentrum calcaratum* (Schltr.) Schltr. (Repert. Spec. Nov. Regni Veg. 12(322–324): 214. 1913) or the alternative *Maxillaria calcarata* (Schltr.) Molinari (Richardiana 15: 296. 2015), when the genus *Cryptocentrum* is considered as part of a broad *Maxillaria*.

48. **Pleurothallis costaricensis** Schltr., Beih. Bot. Centralbl. 36(2): 395–396. 1918. nom. illeg. hom. TYPE: COSTA RICA. Forêts de San Ramón, 1500–1600 m, May 1913, A. *Tonduz* (CR-17647) (holotype: B, destroyed; lectotype, designated here: tracings of the original drawing of the holotype, made under Schlechter’s supervision, AMES 23674/barcode 00074180 [Fig. 27C]).

The name *Pleurothallis costaricensis*, which Schlechter chose to describe one of the collections made by Tonduz at San Ramón in 1913, had been used the year before by Robert A. Rolfe (in the Bulletin of Miscellaneous Information Kew, 1917[2], 80) in describing another collection made by Lankester in Costa Rica and it was, therefore, illegitimate at the time of its publication. Renaming the species as *P. schlechteriana* in honor to its author, Ames (1923) suggested a close relationship of *P. costaricensis* Schltr. with *P. cardiothallis* Rchb.f. (the type, a cultivated specimen without known origin), an interpretation followed, among others, by Stevens and collaborators (2001), Pupulin (2002), and CONABIO (2009).

Pleurothallis schlechteriana surely belongs to the *P. cardiothallis* group, characterized by large plants with deeply cordate, soft leaves and delicate, bilabiate, large flowers with a distinct temporal activity, which in Costa Rica includes *P. oncoglossa* Luer and another four, probably undescribed taxa. The species of this group, however, are characterized by a subrectangular to triangular lip, variously thickened at the apex, and with the base provided with a small glenion, which is quite distinct from the ovate-oblong lip, provided with two adaxial, short keels, which Schlechter (1918) mentioned in the protologue and that are well illustrate in the lectotype drawing (Fig. 59).

The original drawing of the holotype (Fig. 27D), selected as lectotype by Luer (2000), well illustrates the sessile, oblong leaves; the glabrous, connate sepals and the lobed lip with the apex broadly rounded, which distinguish the species.

The name is a synonym of *Stelis quadrifida* (La Llave & Lex.) R.Solano & Soto Arenas, which was originally described as *Dendrobium quadrifidum* La Llave & Lex. from a plant collected by J. J. M. Lexarza in Valladolid (present day Morelia), Mexico. The species has a wide distribution from Mexico to Colombia, Venezuela, and the Greater Antilles (Luer, 2003).

50. **Pleurothallis microtatantha** Schltr., Repert. Spec. Nov. Regni Veg. 3(44–45): 276. 1907. TYPE: COSTA RICA. In den Wäldern von Rancho Flores, ca. 2040 m, blühend am 22 Feb 1890, A. *Tonduz* 2156 (holotype: B, destroyed; isotype, designated here: tracings of Schlechter’s original drawings, AMES 23820/barcode 00093661 [Fig. 28A]; tracings of the original drawings of the holotype made under Schlechter’s supervision, designated here as the epitype: AMES 23651/barcode 00074439 [Fig. 28B]; drawing of the flower from the holotype published by Mansfeld, 1931: no. 129).
FIGURE 28. A, Lectotype of *Pleurothallis microtatantha*; B, Tracings of the original drawing of the holotype of *Pleurothallis microtatantha*; C, Holotype of *Pleurothallis simmleriana*; D, Lectotype of *Pleurothallis tonduzii*. A, courtesy of the United States National Herbarium, Smithsonian Institution; B–D, courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College; C, courtesy of the Herbarium of the British Museum of Natural History.
The only known specimen referable to the original collection, kept at US, which we chose as the species lectotype, is sterile. The copy of Schlechter’s original drawings of the holotype illustrates—albeit not perfectly—the floral details and we proposed it as an epitype to help understand Schlechter’s concept. The illustration shows its characteristic very small habit with small flowers, successive inflorescence exceeding the leaf size, and the lip provided with a distinct basal callus, unique in the genus.

The species, which Schlechter indicated as “one of the smallest Pleurothallis I have ever seen” (Schlechter, 1907), belongs to the genus Platystele, which indeed includes some of the smallest orchid species in the world; even within the Liliputian genus Platystele, F. microtatantha has very small flowers (Fernández et al., 2014). The name is the basionym of Platystele microtatantha (Schltr.) Garay (Bot. Mus. Leafl. 21: 251. 1967).

51. Pleurothallis simmleriana Rendle, J. Bot. 38(451): 274–275. 1900. TYPE: COSTA RICA. Flowered by M.W. Barbey at Chambésy, near Geneva, A. Tonduz s.n. (holotype: BM000082204 [Fig. 28C]; tracings of the original drawing of the holotype: AMES 23676/barcode 00104089).

Pleurothallis simmleriana was described on the basis of a plant originally collected in Costa Rica by A. Tonduz and sent as a living specimen to the Barbey-Boissier conservatory in Chambésy. Being a mecca for plant taxonomists and enthusiasts, especially European, the greenhouses at Chambésy served as an invaluable source for rarities and novelties. During a trip that included Geneva around April of 1900, Alfred Barton Rendle (1865–1938), an avid English botanist, made a mandatory visit to William Barbey and his collections, where his attention was brought to two small, delicate Costa Rican species that were flowering at that moment. Rendle, who worked for the Department of Botany of the British Museum (where he would occupy the chair of Keeper of Botany from 1906 to 1930), took dried specimens back to London, where he classified them as new to science. He published both species in the “Journal of Botany, British and Foreign,” as Pleurothallis simmleriana and Physosiphon minor, in July of the same year. The first was dedicated by request (most probably of Mr. Barbey) to Paul Simmler, chief gardener of the Bossier Collections, whose ability to cultivate tropical plants in that Swiss environment were more than appreciated.

The specimen saved at BM consists of a single leaf and a flowered inflorescence, with a sketch of the dissected perianth. The original label in Rendle’s handwriting clearly indicates that the specimen was collected in Costa Rica by Tonduz, and therefore should be considered as the holotype. The drawing of the type at AMES was undoubtedly traced on the BM’s material.

The species belongs to the group of Specklinia brighamii/condylata (sensu Bogarin et al., 2014), mainly characterized by the caespitose plants less than 10 cm tall, the elongated peduncles with a succession of overlapping floral bracts, and a “fascicle” of pedicels forming an extremely congested raceme. The flowers are mostly speckled, maculate or stained, with entire, smooth sepals and petals, the petals widen towards the middle and an oblong to spatulate lip. Within this taxonomically difficult group, the separation among species is largely based on subtle floral characters and/or the sum of a set of differences in both vegetative and floral morphology. Specklinia simmleriana has been traditionally treated as a widespread species, ranging from Guatemala to Colombia, and several authors also include the Costa Rican Pleurothallis periodica Ames in its synonymy (Stevens et al., 2001; Luer, 2002, 2003; Pupulin, 2002; among others). In this interpretation, S. simmleriana includes plants with an oblong lip, provided with two distinct, triangular, obtuse projections along the proximal margins, but the drawing of the type at BM simply shows an elliptic lip with no lateral projections, which in Costa Rica are restricted to the Caribbean slopes of the Central and Talamanca mountain ranges. As Tonduz provided no locality data for his collection of the type specimen of Pleurothallis simmleriana, the true identity of this species has to be carefully assessed to correctly interpret its taxonomic status.

52. Pleurothallis tonduzii Schltr., Beih. Bot. Centrallbl., Abt. 2 36(2): 397. 1918. TYPE: COSTA RICA. Forêts de San Ramón, 1500–1600 m, May 1913, A. Tonduz s.n. (herb. Nac. Costa Rica 17646) (holotype: B, destroyed; lectotype, designated here: tracings of the original drawing of the holotype, made under Schlechter’s supervision, AMES 23680/barcode 00074808 [Fig. 28D]; illustration of the flower from the holotype published by Mansfeld, 1931: no. 144).

No actual material of the original collection by Tonduz has been located, and for this reason we designate as the species’ lectotype the tracings made in Berlin of the original drawings of the holotype prepared by Schlechter, made under his supervision. The tracings clearly show the characteristic, tall habit of the plant with narrow, erect leaves, slightly cordate at the base. The sketches of the flower illustrate the denticulate petals and the lip with strongly revolute margins, appearing pandurate in outline, that Schlechter mentioned in the protologue.

Endemic to Costa Rica and western Panama, P. tonduzii is a widespread but uncommon epiphyte of the premontane and montane forests on both watersheds of the continental divide.

Figure 29. A, Lectotype of Restrepia tonduzii designated by Luer (1996); B, Lectotype of Scaphyglottis brachiata; C, Lectotype of Sobralia amparioae. A, C, courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College; B, courtesy of the United States National Herbarium, Smithsonian Institution.
The drawings of the type at AMES, selected by Luer (1996) as the species’ lectotype, clearly show the habit of the plant with the characteristic position of the flower, growing near the base of the dorsal side of the leaf. They also show the details of the dissected parts of the flower.

Most authors treat *R. tonduzii* as a synonym of *Restrepiopsis muscifera* (Linnd.) Rchb.f. ex Lindl. ([Jørgensen et al., 1999; Luer and Escobar Restrepo, 1996; Hågsgter and Salazar, 1990; Pupulin, 2002; CONABIO, 2009; among others), a species widely distributed from Mexico to Colombia, originally described from a plant collected in Guatemala by G. Skinner.

54. *Scaphyglottis brachiata* Schltr., Repert. Spec. Nov. Regni Veg. 9: 432. 1911. TYPE: COSTA RICA. [Guanaacaste]. In den Wäldern von Nicoya, blühend in Dezember 1899. *A. Tonduz* [s.n. (Herb. Instit. physico-geogr. nat. costaricensis)] 13729 (holotype: B, destroyed; isotype, designated here as the lectotype: US 577847 [Fig. 29B]; tracings of the original drawings of the holotype, made under Schlechter’s supervision: AMES 24598/barcode 00104153; illustration of the flower from the holotype published by Mansfeld, 1931: no. 169).

The isotype at US, designated as the species’ lectotype, is complete and fertile, and it also bears floral analysis prepared by J. T. Atwood for his studies on Costa Rican orchids. The notably thickened pseudobulbs and the flowers with the column provided with stigmatic, long dentiform wings, easily distinguish the species.

The name is a synonym of *S. stellata* Lodd. Ex Lindl., based on a Guayanese specimen from Demerara, a broadly distributed species ranging from Costa Rica southward to Bolivia, the Guyanas and Brazil.

55. *Sobralia amparoae* Schltr., Repert. Sp. Nov. Regni Veg. Beih. 19: 8. 1923. TYPE: COSTA RICA. Im Garten der Mdme. Amparo de Zeledon, A. Tonduz 51. (holotype: B, destroyed; isotype, designated here as the lectotype: AMES 31024/barcode 00090628 [Fig. 29C]).

Sobralia amparoae is one of the species that Schlechter described from dried materials prepared by Tonduz in the garden of Mme. Amparo López-Calleja in San José. The original collecting locality of the specimen, if known at the time of its preparation, was not recorded. The isotype at AMES is the only known evidence of the original collection: it is made by the foliaceous apex of a stem and a flower on a short, conic inflorescence. The flower, however, was gummed on the sheet and is very brittle, so its rehydration would probably be impossible. Unfortunately, no drawing of the type specimen is conserved.

Sobralia amparoana is probably a good species. Robert Dressler and the senior author are working at an attempt to reconstruct the identity of this elusive species, trying to match its salient characters, as Schlechter stated them in the protologue, with those of living *Sobralia* specimens with known provenance. When this patient work has concluded, perhaps it could be possible to designate an epitype based on a modern collection with geographic identity. *Sobralia amparoae* is apparently characterized by the tall plants (up to two meters high) with glabrous stems and large flowers pale rose in color, with a yellow blotch in the throat of the lip, a quite unusual combination of features among Costa Rican species of *Sobralia*.

The specimen recorded in the type database of the Herbarium at the Smithsonian Institution is the only known isotype, and therefore it would be the best candidate for lectotypification. We do not formally designate it here as such because we were unable to see it or to obtain a digital reproduction of the specimen.

The Ames herbarium at Harvard own a copy of the original drawing of the holotype, made in Berlin under the supervision of Schlechter (Fig. 30A), as well as a drawing of the isotype specimen kept at the Smithsonian. On the latter sheet, Ames himself drew a flower and its dissection during a visit to US.

The name is treated as the basionym of *Mesadenella tonduzii* by Stevens and co-workers (2001), Pupulin (2002), and Dressler (2003), an uncommon species distributed from Mexico to Costa Rica, also doubtfully recorded from Brazil (Forzza et al., 2014).

The only known species of the genus *Mesadenella* in Costa Rica, *M. tonduzii* is recognized by the broadly elliptic, non-articulate leaves forming a basal rosette and the long, lax inflorescence of resupinate flowers, with a distinct mentum produced by the connate base of the lateral sepals.

57. *Stelis aemula* Schltr., Beih. Bot. Centralbl., Abt. 2 36(2): 385. 1918. TYPE: COSTA RICA. Forêts de San Ramón, 1500–1600 m. *A. Tonduz* s.n. (Museo Nacional de Costa Rica 17632b) (holotype: B, destroyed; isotype, designated here as the lectotype: US 1080686/barcode 00093535; tracings of the original drawings of the holotype, made under Schlechter’s supervision: AMES 23691/barcode 00090504 [Fig. 30B]).

The isotype at US is the only known extant material of the original collection and is therefore designated as the lectotype. The specimen, however, is sterile, and for this reason we also propose as an epitype the sheet at AMES that includes tracings of Schlechter’s analyses, and a sketch with comments by O. Ames.

The epitype sheet, with tracings of Schlechter’s original analyses, also includes a sketch made by Oakes Ames of a flower from the isotype at US, but the studied specimen had the lip missing and the petals much damaged. From
FIGURE 30. A, Tracings of the original drawing of holotype of *Spiranthes tonduzii*; B, Epitype of *Stelis aemula*; C, Tracings of the original drawing of holotype of *Stelis conmixta*; D, Tracings of the original drawing of holotype of *Stelis conmixta*. All by courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College.
his observations of the type materials Ames (manuscript notes, 1927) considered that *S. aemula* and *S. sarcodantha* (see below) are difficult to set apart, and probably conspecific. Indeed, the Museo Nacional de Costa Rica sent the specimens of the plants that served Schlechter for describing both new species as a sole collection by Tonduz, filed under the Museum number 17632. Schlechter interpreted one of the specimens as *S. sarcodantha*, and added a “b” to the other one to distinguish it as the type of *S. aemula*. He distinguished *S. sarcodantha* from *S. aemula* by the thinner leaves, the more slender inflorescence and the more membranous flowers. However, from the tracings of the original drawings of both species, the floral details are “inconsiderably" different, as stated by Ames in his note on the epitype sheet.

The ramicaul shorter than the leaf, the subcongested inflorescence, the sepals only partially fused, the three-veined dorsal sepal, and the lip without an apical articule, distinguish the species among Costa Rican relatives.

58. *Stelis conmixta* Schltr., Beih. Bot. Centralbl., Abt. 2 36(2): 387–388. 1918. TYPE: COSTA RICA. Forêts de San Ramón, 1500–1600 m, A. Tonduz s.n. (Museo Nacional de Costa Rica 17632a) (holotype: B, destroyed; isotype, selected here as the lectotype: AMES 23707/barcode 00084129 [the flower preserved in glycerine]; tracings of the original drawings of the holotype, made under Schlechter’s supervision: AMES 23707/barcode 00104691 [Fig. 30C]; illustration of the flower from the holotype published by Mansfeld, 1931: no. 85).

Stelis conmixta is the second taxon that Schlechter described on the basis of a collection made by Tonduz at San Ramón, which the staff at the Museo Nacional considered a unique collection, filed under the Museum number 17632. Schlechter interpreted one of the specimens as *S. sarcodantha*, added a letter “a” to one of the others to distinguish it as the type of *S. conmixta*, and marked with “b” the plant that he treated as the type of his *S. aemula*. Schlechter (1918) compared it with *S. sarcodantha*, from which he mainly distinguished it by the thinner stems and leaves and the more delicate, almost twice larger flowers, provided with a rhombic lip. The drawing selected as the lectotype well illustrates these characters. The sheet of the lectotype also has a photograph of the holotype, taken in Berlin prior to its destruction.

The relatively large plant with narrow leaves and congested inflorescences that barely surpass the leaf, and the large flowers with the lateral sepals connate almost to the mid-length and the dorsal sepal five-veined distinguish *S. conmixta*, known only from Costa Rica.

59. *Stelis effusa* Schltr., Repert. Spec. Nov. Regni Veg. 3(42–43): 247. 1906. TYPE: COSTA RICA. epiphytisch auf Bäumen bei Turrialba, ca. 570 m, blühend im Nov 1893, A. Tonduz [s.n. (Herb. Instit. physico-geogr. nat. costaricensis)] 8279 (holotype: B, destroyed; isotypes: AMES 23717/barcode 00084176, designated here as the lectotype; AMES 21921/barcode 00104739; CR 8279; US 577191; Z 00066959; photograph of the holotype taken in Berlin: AMES 21921/barcode 00104739; tracings of the original drawings of the holotype, made under Schlechter’s supervision: AMES 23717/barcode 00104740 [Fig. 30D]).

The isotypes at AMES (×2), US, and Z are fertile, while the isotype at CR is sterile. AMES 23717/barcode 00084176 is chosen as the lectotype as the sheet on which it is mounted also bears the tracings of Schlechter’s analyses, which are crucial for the understanding of the taxonomic concept.

The lax, zig-zag inflorescence much larger than the leaf, the circular, apiculate sepals and the lip provided with a cavity extending to the apex, distinguish the species, which is endemic to Costa Rica.

60. *Stelis longicuspis* Schltr., Repert. Spec. Nov. Regni Veg. 9(196–198): 28. 1910. TYPE: COSTA RICA. in den Wäldern von La Palma, ca. 1459 m, blühend im Nov 1898, A. Tonduz [s.n. (Herb. Instit. physico-geogr. nat. costaricensis)] 12650 (holotype: B, destroyed; lectotype, designated here: tracings of the original drawings of the holotype, made under Schlechter’s supervision, AMES 55250/barcode 00104825 [Fig. 31A]; photograph of the holotype taken in Berlin: AMES 55250/barcode 00104825).

The lectotype drawing well illustrates the lax inflorescence, the acuminate petals, and the long-acuminate lip characterizing the species. The sheet also includes a photograph of the holotype taken in Berlin, where the original floral analysis by Schlechter was affixed.

Luer (2009) treated the name as a synonym of *Stelis pardipes* Rchb. f., based on plant collected by H. Wendland in Costa Rica at Desengaño, approximately at the same type locality of *S. longicuspis*. This interpretation was originally suggested by Schlechter himself, who annotated the tracings of his drawings of the type with this synonymy (Fig. 31A).

61. *Stelis sarcodantha* Schltr., Beih. Bot. Centralbl., Abt. 2 36(2): 392–393. 1918. TYPE: COSTA RICA. Forêts de San Ramón, 1500–1600 m, A. Tonduz s.n. (Museo Nacional de Costa Rica 17632) (holotype: B, destroyed; isotypes: AMES 24935/barcode 00104976 [the fragments of the flower stored in glycerine], designated here as the lectotype, with sketches by O. Ames from a flower from the type and photographs of the holotype at Berlin [barcode 00084411] and the isotype at US [barcode 00084412] [Fig. 31B]; US 1080686; tracings of the original drawings of the holotype, made under Schlechter’s supervision, AMES 24934/barcode 00104975; analytical drawings by O. Ames of a flower from the type: AMES 33368/barcode 00104977; illustration of the flower from the holotype published by Mansfeld, 1931: no. 106).

The isotype sheet at US, which has four specimens mounted, is sterile, and for this reason we selected to lectotypify the species with the sheet at AMES, which has a flower conserved in glycerine, and analytical drawings made from the type.

The plants with narrowly elliptic leaves surpassing in length the ramicaul, the sepals obtuse, and the ovoid lip with a small callus on the back distinguish the species. D’Arcy
Figure 31. A, Lectotype of Stelis longicuspis; B, Lectotype of Stelis sarcodantha; C, Lectotype of Stenoptera costaricensis; D, Lectotype of Tetragestus gracilis. All by courtesy of the Harvard University Herbaria, reproduced with permission of the President and Fellows of Harvard College.
(1987) and Stevens and co-workers (2001) treat the name as a synonym of *Stelis aemula* Schltr., a broadly distributed species ranging from Mexico to Costa Rica, described from a simultaneous collection by Tonduz that originally bore the same accession number at the Museo Nacional de Costa Rica (see above).

No material of the original collection is known to be in existence, and we are lectotypifying the species with the tracings of the original analytical drawings of the holotype, made in Berlin for the herbarium of Professor O. Ames at Harvard University. *Stenoptera costaricensis* may be recognized by the bracts of the inflorescence shorter than the subtending flowers, the thickened lip with the side lobes erect, flanking the column, and the S-shaped column, which are well illustrated in the lectotype drawings.

The name is the basionym of *Gompichis costaricensis* (Schltr.) Ames, F.T.Hubb. & C.Schweinf. (Bot. Mus. Leafl. 3: 37, 1934), and the species has been treated under this name (Schltr.) Schltr. (Repert. Spec. Nov. Regni Veg. Beih. 19: 28. 1923), which most authors (see, for example, D’Arcy, 1987; Brako and Zarucchi, 1993; Stevens et al., 2001; Pubulip, 2002; Dressler, 2003; Jørgensen et al., 2014; among others) treat as a synonym of *S. prolifera* Cogn.

The two taxa have no relationship. Even though subsequent authors treated the substitute name *R. inconspicua* as that of a new species (i.e., Schlechter, 1920; Chase, 1986; Chase et al., 2008), considering it typified by *T. candidum*, due to Kränzlin’s erroneously belief that the epithet “candida” was already occupied in *Rodriguezia*. As a substitute name is typified by the name of the type, it replaces, *R. inconspicua* is typified by the type of *T. candidum*, a true species of *Trichocentrum* based on a Guatemalan collection by G. Skinner, and is therefore a synonym of the latter species. Tonduz’ collection, of which duplicates exist at CR, HBG, and G, has therefore no nomenclatural standing.

EXCLUDED NAMES

As Kränzlin received from E. Autran a specimen of a small-flowered Oncidiinae species collected by Tonduz in Costa Rica and grown in the greenhouse of Mme. Barbey at Chambéry, he erroneously believed that it corresponded to the species described almost sixty year before by John Lindley as *Trichocentrum candidum*. The similarity between the two species, if any, is however, superficial at most and

Dressler (2003) considered it a synonym of *Gompichis adnata* (Ridl.) Schltr. (based on *Stenoptera adnata* Ridl.), but the type of this species was originally collected at Roraima, in Venezuelan Guayana.

In the absence of any actual material referable to the type collection, we have chosen to lectotypify *T. gracilis* with the tracings made in Berlin of the original drawing of the holotype. The drawings well illustrate the habit of the species, with the new pseudobulbs produced at the top of the oldest ones, forming chains, and the 3-lobed, almost rhombic lip, which characterize the taxon.

The name is the basionym of *Scaphyglottis gracilis* (Schltr.) Schltr. (Repert. Spec. Nov. Regni Veg. Beih. 19: 28. 1923), which most authors (see, for example, D’Arcy, 1987; Brako and Zarucchi, 1993; Stevens et al., 2001; Pubulip, 2002; Dressler, 2003; Jørgensen et al., 2014; among others) treat as a synonym of *S. prolifera* Cogn.

LITERATURE CITED

——. 2015. *...Of men and orchids... Part 1*. Imprenta Mariscal, Quito.

APPENDIX

PLANTS DEDICATED TO ADOLPHE TONDUZ

Acanthaceae
- Acanthandra tonduzii Leonard
- Chamaeranthemum tonduzii Lindau
- Justicia tonduzii Lindau
- Mendoncia tonduzii Turrill
- Ruellia tonduzii Lindau

Annonaceae
- Guatteria tonduzii Diels

Apocynaceae
- Tonduzia Pittier (genus)
- Tonduzia longifolia (A. DC.) Markgr.
- Tonduzia macrantha Woodson
- Tonduzia macrophylla Kuhlm.
- Tonduzia parvifolia Pittier
- Tonduzia pittieri Domn.Sm.
- Tonduzia stenophylla Pittier

Araceae
- Anthurium tonduzii Engl.
- Dieffenbachia tonduzii Croat & Grayum
- Urophatha tonduzii Engl.

Aristolochiaceae
- Aristolochia tonduzii Schmidt

Aspidiaceae
- Aspidium tonduzii H.Christ
- Dryopteris tonduzii C.Chr.

Asteraceae
- Eupatorium tonduzii Klatt
- Liabum tonduzii B.L.Rob.
- Mikania tonduzii B.L.Rob.
- Senecio tonduzii Greenm.
- Sinclairia tonduzii Rydb.
- Verbesina tonduzii Greenm.

Begoniaceae
- Begonia tonduzii C.DC. ex Durand & Pittier

Bignoniaceae
- Anemopaegma tonduzianum Kranzl.
- Petasota tonduzianum Kranzl.

Bromeliaceae
- Aechmea tonduzii Mez & Pittier
- Tillandsia tonduziana Mez.
- Vriesea tonduziana L.B.Sm.

Cactaceae
- Cereus tonduzii A.Weber
- Rhipsalis tonduzii F.A.C.Weber
- Werckleocereus tonduzii Britton & Rose

Capparaceae
- Capparis tonduzii Briq.
- Cleome tonduzii Briq.

Celastraceae
- Gyminda tonduzii Loes.

Cucurbitaceae
- Anguria tonduzii Cogn.
- Gurania tonduziana Domn.Sm.
- Weinmannia tonduzii Engl.

Cunoniaceae
- Weinmannia tonduzii Engl. & Prantl

Cyperaceae
- Cyperus tonduzianus Boeck.
- Scleria tonduzii Boeck.

Euphorbiaceae
- Croton tonduzii Pax
Fabaceae
Anneslia tonduzii Britton & Rose
Cassia tonduzii Standl.
Chamaecrista tonduzii Britton & Rose
Cojoba tonduzii Britton & Rose
Inga tonduzii Donn.Sm.

Fagaceae
Quercus tonduzii Seem.

Guttiferae
Rheedia tonduziana Engl.

Lamiaceae
Salvia tonduzii Briq.

Lauraceae
Ocotea tonduzii Standl.
Phoebe tonduzii Mex

Lomariopsidaceae
Elaphoglossum tonduzii H.Christ

Malpighiaceae
Stigmaphyllon tonduzii C.E.Anderson

Marcgraviaceae
Marcgravia tonduzii Gilg

Melastomataceae
Acinodendron tonduzii Kuntze
Clidemia tonduzii Gleason
Miconia tonduzii Cogn.

Meliaceae
Cedrela tonduzii C.DC.
Guarea tonduzii C.DC.
Trichilia tonduzii C.DC.

Menispermaceae
Hyperbaena tonduzii Diels

Monimiaceae
Siparuna tonduziana Perkins

Moraceae
Ficus tonduzii Standl.

Myrtaeae
Calyptroanthes tonduzii Donn.Sm.

Orchidaceae
Camaridium tonduzii Schltr.
Cycnoches tonduzii Schltr.
Elleanthus tonduzii Schltr.
Encyclia tonduziana Schltr.
Lepanthes tonduziana Schltr.
Masdevallia tonduzii Woolward
Microstylis tonduzii Schltr.
Oncidium tonduzii Schltr.
Ornithocephalus tonduzii Schltr.
Pleurothallis tonduzii Schltr.
Spiranthes tonduzii Schltr.
Stelis tonduziana Schltr.

Piperaceae
Peperomia tonduzii C.DC.
Piper tonduzii C.DC. ex Pittier

Poaceae
Chusquea tonduzii Hack.
Paspalum tonduzii Mez
Trisetum tonduzii Hitchc.

Pteridophyta
Acrostichum tonduzii Christ
Aspidium tonduzii Christ

Rosaceae
Lachemilla tonduzii Dammer

Rubiaceae
Cephaelis tonduzii K.Krause
Gonzalagunia tonduzii K.Krause
Hoffmannia tonduzii Standl.

Sabiaceae
Meliosma tonduzii Donn.Sm.

Smilacaceae
Smilax tonduzii Apt

Viscaceae
Phoradendron tonduzii Trel.

A NOTE ON THREE “NEW” SPECIES OF XYLOBIUM (ORCHIDACEAE, MAXILLARIINAE) FROM RUIZ AND PAVÓN’S PERUVIAN COLLECTIONS

FRANCO PUPULIN

Abstract. The recent transfer to the genus Xylobium of three orchid species originally described by Ruiz and Pavón as members of Maxillaria is challenged on the basis of the extant evidence found in the herbarium and the archives of the Royal Botanic Garden, Madrid, where the first set of materials intended for the Flora Peruviana et Chilensis is deposited. The study of the taxonomic literature does not support the claims about a common usage of the three names, Maxillaria alata, M. bicolor, and M. cuneiformis, as being referable to Xylobium.

Keywords: Flora Peruviana et Chilensis, Maxillaria, Orchidaceae, Pavón Jiménez José Antonio, Ruiz López Hipólito, Xylobium

In a recently published paper, Carpio Lau and coauthors (2016) formally transferred to the genus Xylobium Lindl. three orchid species originally described in the late eighteenth century by Hipólito Ruiz and José Pavón as members of their broadly defined concept of Maxillaria (Ruiz and Pavón, 1794, 1798). The nomenclatural recombinations are apparently based on the opinions of previous authors (i.e., Schweinfurth, 1960; Brako and Zarucchi, 1993; Roque and León, 2007; Schuiteman and Chase, 2015), as well as on alleged morphological features, both vegetative and floral, of the three transferred species of Maxillaria.

Actually, the consideration of Maxillaria alata Ruiz & Pav., M. bicolor Ruiz & Pav., and M. cuneiformis Ruiz & Pav., as belonging to Xylobium, which the authors claim is consistent with the taxonomic literature is instead, quite circumstantial at best.

In his treatment of the Peruvian orchid flora, Schweinfurth (1960: 676, 682, 690) offered no rationale for the taxonomic treatment of these three taxa, nor did subsequent authors who, in their quotes of one or another of the concerned species of Maxillaria, followed Schweinfurth both explicitly (i.e., Roque and León, 2007: 824–825) and implicitly (i.e., Schuiteman and Chase, 2015). In particular, in their catalogue of Peruvian plants, Brako and Zarucchi (1993) considered M. alata as co-specific with Cyrtidiorchis alata (Lindl.) Rauschert (based on Camaridium alatum Lindl., the type: “In montibus Loxa,” Hartweg s.n.), while both M. bicolor and M. cuneiformis are treated as true members of Maxillaria, even though they recorded a personal communication by G. Carnevali, who believed that M. bicolor belongs to Xylobium (the same belief is expressed about M. triphylla, which truly belongs instead to Cyrtochilium; see Pupulin, 2012a). Maxillaria cuneiformis was not discussed either in the paper by Roque and León (2007) or by Schuiteman and Chase (2015), and the latter authors did not treat M. bicolor either. Apart from the literature cited by Carpio Lau and coauthors (2016) to support their view, the most recent checklist of Peruvian Orchidaceae (Zelenko and Bermúdez, 2009) omits M. alata, and treats both M. bicolor and M. cuneiformis as good species of Maxillaria.

The orchid generic concepts originally proposed by Ruiz and Pavón (1794) in their preliminary introduction to the flora of Peru and Chile are quite broadly defined, and the boundaries between genera are sometimes weak enough to overlap. This explains why species that belong to the same genus according to the current classification were described by Ruiz and Pavón (1798) into different genera. So, for example, of the four species of Cyrtochilium Kunth described by Ruiz and Pavón, three were proposed as members of their Maxillaria, and the last one as a species of Bletia Ruiz & Pav. (Dalström, 2001; Pupulin, 2012a). Accordingly, of the 16 species of Maxillaria originally described in the Systema vegetabilium florae Peruvianae et Chilensis (Ruiz and Pavón, 1798, title hereafter shortened in text as the Systema), only five belong to the modern concept of Maxillaria sensu lato, and only three of the genera Maxillariella M.A.Blanco & Carnevali and Ornithidium Salisb. ex R.Br., are recognized as distinct from Maxillaria. Of the remaining eleven species, one belongs to Cytopodium R.Br., three to Cyrtochilium Kunth, one to Ida A.Ryan & Oakeley (Sudamerlycaste Archila), one to Oncidium Sw., and two to Xylobium. Until Carpio Lau and collaborators (2016), the last three species have been treated as incertae sedis. When Maxillariella, Ornithidium, and Sauvetrea Szlach., are treated as congeneric with Maxillaria, three additional species of this genus must be added to the list, originally described by Ruiz and Pavón as Fernandezia punctata Ruiz & Pav., F. haematodes Ruiz & Pav., and Bletia uniflora Ruiz & Pav., respectively (Blanco et al., 2007; Pupulin, 2012a, 2012b).

The correct interpretation of the orchid names originally proposed by Ruiz and Pavón in their account on the orchid flora of the Viceroyalty of Peru, as well as a positive identification of the concerned species, has been

I greatly thank Esther García Guílén, vice-director of the Royal Botanic Garden, Madrid, in charge of the cultural heritage of the institution, who kindly allowed access to the manuscripts and illustrations from Ruiz and Pavón’s expedition. Mauricio Velayos Rodríguez, and Ma. Rosario Noya Santos provided full support and help during my stay in MA.

1 Lankester Botanical Garden, University of Costa Rica. P.O. Box 302-7050 Cartago, Costa Rica; Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts, U.S.A.; Marie Selby Botanical Gardens, 811 South Palm Avenue, Sarasota, Florida 34236, U.S.A.; franco.pupulin@ucr.ac.cr

© President and Fellows of Harvard College, 2016
ISSN: 1938-2944, DOI: 10.3100/hpib.v21iss2.2016.n12, Published online: 31 December 2016
traditionally hampered by the often extremely synthetic nature of the protologues published in the *Systema* (Ruiz and Pavón, 1798) and the fragmentary character of the main set of their herbarium specimens, conserved in Madrid (MA). The discussion and taxonomic interpretation of the unpublished orchid paintings produced during the Spanish botanical expedition to South America (Pupulin, 2012a, 2012a b, 2014) allowed, in several cases, to correctly place Ruiz and Pavón’s names in the systematic context of the South American orchid flora, sometimes correcting previous erroneous identifications based on the interpretation of the protologues alone. Nevertheless, not all the species described by the Spanish botanists were illustrated at the time of the expedition, and a few illustrations that Ruiz cited in his manuscripts were eventually lost or dispersed after the incorporation of the South American materials to the Oficina Botánica in Madrid in the early nineteenth century (Steele, 1964; Miller, 1970; Rodríguez Nozal, 1994; García Guillén and Muñoz Paz, 2003; Pupulin, 2012a).

Apart from the main herbarium of the botanical expedition led by Ruiz, and the impressive body of original illustrations prepared during the journey of the botanists in the Viceroyalty, the Royal Botanic Garden of Madrid (RBGM) also hosts a monumental corpus of manuscripts prepared in South America and a fair copy, species, the archives at the RBGM conserve both the original Spain of the “first” and “second” botanists. For most of the who continued the American collections after the return to “(attachés) to the expedition, Juan José agregados” by Ruiz, but also with descriptions and notes by the two (RBGM) also hosts a monumental corpus of manuscripts in the Viceroyalty, the Royal Botanic Garden of Madrid illustrations prepared during the journey of the botanists expeditions led by Ruiz, and the impressive body of original

(Steele, 1964; Miller, 1970; Rodríguez Nozal, 1994; García

Oficina Botánica in Madrid in the early nineteenth century (see, in particular, Rodríguez Nozal, 1994).

On the basis of the actual evidence, it is legitimate to challenge the transfer of the three “obscure” species of *Maxillaria* to *Xylobium*. When Ruiz and Pavón described those species that indisputably belong to *Xylobium*, i.e., *Maxillaria undulata* and *M. variegata* (Ruiz and Pavón, 1798), they clearly noted in the manuscripts and/or protologues that the leaves are many-veined or plicate (“*quinque septem nervia striata,* “*quinquenervia plicata,*” a feature that is typical of the genus. Also, in both species, Ruiz noted in his unpublished manuscripts, that the mid-lobe of the lip is tuberculare-glandulose (“*rugoso granulatum*” in *M. undulata; “*ad apicem puntatoglandulosum*” in *M. variegata* [manuscripts at MA, AIB04-M-0004-0003-017 and AIB04-M-0004-0003-019, respectively]). In *M. cuneiformis*, the leaves are expressly described as “*ensiformia canaliculata, [...] niita,*” or conduplicate and glossy, and the manuscript description characterizes the lip as “*integrum,*” entire, two features that are incompatible with *Xylobium*, whose species invariably present plicate leaves and, with a few exceptions, distinctly three-lobed labella. The pseudobulbs of *M. bicolor* are described as ancipitous, a character unknown in any *Xylobium* species, and the pedicels are “*subdichotomi,*” i.e., arranged in two opposite rows in the same plane, while in *Xylobium* the flowers are spirally arranged on the rachis (Whitten, 2009). The available material relative to *M. alata* is, if possible, still more curt, and the manuscript description conserved in descriptions of *Maxillaria alata* (no. 167) and *M. bicolor* (no. 168) Ruiz indicated that no illustrations of these species were prepared, but made no reference to the lack of *exsiccata*, this strongly suggests that actual type specimens were originally incorporated into the herbarium of the *Flora Peruviana et Chilensis*.

In the herbarium of Ruiz and Pavón, which also contains the specimens sent from Peru and Ecuador by the agregados of the expedition (see meaning of agregados above), are conserved 14 sheets originally annotated by the Spanish botanists as species of “*Maxillaria.*” Of these, only one (the type of *M. platypetala*) is a true *Maxillaria* in the modern sense, while four others belong to *Cyrtochilum*, three to *Ida* and three to *Xylobium*, and one each to *Cyrtopodium*, *Epidendrum*, and *Oncidium*. There are, however, another 13 sheets variously labeled in Ruiz’s and Manzanilla’s handwriting as “*Fernandezia,*” “*Orchys*” [*sic*], and “*Ophrys,*” which do correspond to *Maxillaria* sensu lato according to the current classification. No specimen at MA, other than the type materials of *Maxillaria undulata* (MA 810873) and *M. variegata* (MA 801871, 801872) could be assigned to *Xylobium*. Among the specimens truly belonging to *Maxillaria*, none agree with the type localities cited in the *Systema*, with the exception of the type specimen of *Maxillaria prolifera* (annotated as «*Ophrys*»), originally collected at Huassahuassi. Nevertheless, ample possibilities exist that the type material of *M. alata* and *M. cuneiformis* could be searched for within the many herbaria where the specimens collected in Peru during the Botanical Expedition were dispersed during the nineteenth century

of the lip is tuberculare-glandulose ("*rugoso granulatum*"

in *M. undulata; “*ad apicem puntatoglandulosum*” in *M. variegata* [manuscripts at MA, AIB04-M-0004-0003-017 and AIB04-M-0004-0003-019, respectively]). In *M. cuneiformis*, the leaves are expressly described as “*ensiformia canaliculata, [...] niita,*” or conduplicate and glossy, and the manuscript description characterizes the lip as “*integrum,*” entire, two features that are incompatible with *Xylobium*, whose species invariably present plicate leaves and, with a few exceptions, distinctly three-lobed labella. The pseudobulbs of *M. bicolor* are described as ancipitous, a character unknown in any *Xylobium* species, and the pedicels are “*subdichotomi,*” i.e., arranged in two opposite rows in the same plane, while in *Xylobium* the flowers are spirally arranged on the rachis (Whitten, 2009). The available material relative to *M. alata* is, if possible, still more curt, and the manuscript description conserved in
FIGURE 1. Manuscripts from the Botanical Expedition to the Viceroyalty of Peru. A, Original manuscript description of *Maxillaria alata* (bottom of the page) (AJB04-M-0002_0002_316); B, Fair copy manuscript description of *Maxillaria alata* (AJB04-M-0004_0003_031); C, Original manuscript description of *Maxillaria variegata* (bottom of the page) (AJB04-M-0002_0002_331); D, Fair copy manuscript description of *Maxillaria variegata* (AJB04-M-0004_0003_019). All in Hipólito Ruiz’ handwriting. Courtesy of the Archives, Royal Botanic Garden, Madrid.
Madrid has little to add to the published protologue (Ruiz and Pavón, 1798: 223). The specific epithet is derived from the winged characteristic of the fruits, but a trigonous ovary is at most rare in Xylobium.

There are no rational reasons to “resolve” the taxonomy of the less obvious species of *Maxillaria* originally described by Ruiz and Pavón transferring them arbitrarily to another genus. If a “consistent” use in literature of these names exists, it is including them in *Maxillaria*, albeit with uncertainty. On its side, the available evidence, which does not include access to the type specimens of two of the concerned taxa—probably hosted in herbaria other than Madrid—suggests that at least two of the species, *M. bicolor* and *M. cuneiformis*, certainly do not belong to Xylobium according to their characteristic morphological features, as described by Ruiz and Pavón. The typical inflorescence arrangement of the third transferred taxon, *M. alata*, strongly suggests that it is not a species of Xylobium either.

The pure nomenclatural exercise of transferring “names” from one genus to another without gaining any additional information about the real nature of the concerned organism simply transforms a scientific uncertainty into a false obviousness and plainness. Artificially inflating the taxonomy of Xylobium with the addition of three “phantom” species from Peru not only risks obscuring the phylogeographic history of the genus and altering the information about the diversity of the Peruvian flora, but also precludes serious attempts at interpreting and understanding the original concepts of Ruiz and Pavón. There are still several herbaria remaining in Europe and the United Stated to search for the original material brought back from Peru by the Spanish Botanical Expedition and, most importantly, there are places in the Peruvian province of Tarma still awaiting new botanical exploration aimed at rediscovering the plants originally collected during the long journey of the Expedition to the Viceroyalty of Peru.

Literature Cited

A NOTE ON MASDEVALLIA ZAHLBRUCKNERI AND M. UTRICULATA (ORCHIDACEAE)

LIZBETH OSES SALAS1,2 AND ADAM P. KARREMANS1,3

Abstract. Masdevallia utriculata and M. zahlbruckneri are characterized and illustrated based on living plants from Costa Rica. The species are compared with each other on the basis of their general similar morphology. Their taxonomic status is reviewed.

Keywords: Masdevallia utriculata, M. zahlbruckneri, new record, taxonomy, Zahleria

Heinrich Gustav Reichenbach was the first to propose subdivisions of the genus Masdevallia Ruiz & Pav.; he published 14 sections in total (Reichenbach f., 1873, 1874a, 1874b, 1875, 1876a, 1876b, 1877, 1878a, 1878b; Woolward, 1896; Luer, 1986), including Masdevallia sect. Amandae Rchb.f. (Reichenbach f., 1874b). Luer (1986) raised Amanda to the rank of subgenus and included five sections within it: Masdevallia sections Amandae, Fissae Rchb.f., Nidiflora Luer, Ophioglossae Luer and Pygmaeae Luer. Luer would later elevate these sections to the rank of subgenus (Luer, 2000).

When establishing subgenus Pygmaeae Luer, the author united subgenus Masdevallia sections Almuae and Aphanes with subgenus Amanda section Pygmaeae (Luer, 1986). He also clarified that, although the species in subgenus Pygmaeae were probably not closely related, he brought them together because of their tufted small habit. In turn, subgen Pygmaeae was divided into four sections: Almuae Luer, Aphanes Luer, Pygmaeae Luer, and Zahlbrucknerae Luer. Luer (2000) characterized Masdevallia sect. Zahlbrucknerae as a group of small to medium size herbs with caespitose habit, with a successively flowered raceme borne by an ascending, horizontal to descending, terete peduncle, provided with smooth or slightly costate ovaries and sepals contracted into slender tails. The lips are more or less oblong with a pair of longitudinal calli. The most distinguishing feature of this section is the morphology of the callous petals, which present a distinct, retrorse concavities at the base (Luer, 2006). The most recent reclassification of Masdevallia, Luer (2006) created the novel generic concept, Zahleria, typified by Z. zahlbruckneri (Kraenzl.) Luer. Zahleria additionally includes, Masdevallia naranjapatae (Luer) Luer and Z. vieirana (Luer & R.Escobar).

Meanwhile, in a very different corner of Masdevallia, Reichenbach f. proposed Masdevallia sect. Coriaceae Rchb.f. (Reichenbach f., 1874), which in turn Veitch and Sons (1889) reduced to subsection. Luer (1986) retained Masdevallia sect. Coriaceae and split into subsections Coriaceae (Rchb.f.) H.J.Veitch and Durae Luer. In 2000, Luer elevated subsection Durae to the sectional rank, and in 2006 he reduced sect. Durae to the synonymy of his new genus Regalia (Luer, 2000, 2006). According to Luer, Regalia is a small Andean genus composed of ten species, characterized by large plants with stout ramicauls, thickly coriaceous leaves, and racemes of large, rigid, fleshy, long-lasting, long-caudate flowers produced in slow succession. The petals are thickly cartilaginous, paddle-shaped and truncate, and the lip is oblong and thick, with a pair of concavities at the base (Luer, 2006). Regalia utriculata (Luer) (=Masdevallia utriculata) is one of its smallest members and lacks otherwise characteristic long tails of the lateral sepals.

Masdevallia utriculata and M. zahlbruckneri share several morphological traits with other species of Masdevallia that have not been placed in the same section, subgenus or even genus (Luer, 2006). We here present material of both the species from Costa Rica and discuss their taxonomic status.

Epiphytic, caespitose, small, herbs. Roots slender. Ramicauls slender, erect, 1.0–1.5 cm long, enclosed by 2–3 close, tubular sheaths. Leaf erect to suberect, coriaceous, 4.6–8.1 cm long including a petiole, the blade narrowly obovate, obtuse, 1.9–2.0 cm wide, gradually narrowed below into the sub-petaloid base. Inflorescence a loose, successively few-flowered raceme borne by a descending to horizontal peduncle 2.7–7.0 cm long, produced from low on the ramicaul, with a bract below the middle. Floral bracts

We are thankful to the staff at CR and USJ for access to their material. And special thanks to Diego Bogarín for the LCDP of Masdevallia utriculata and Franco Pupulin for his appreciated help. Thanks also to two anonymous reviewers, who enhanced the manuscript with their comments and corrections. This paper is part of the projects “Flora costaricensis: Taxonomia y filagenia de la subtribu Pleurothallidinae (Orchidaceae) en Costa Rica,” under number 814-BO-052, and “Taxonomia y Filogenia de Masdevallias del grupo Reichenhaua (Orchidaceae: Pleurothallidinae) en Costa Rica,” under number 814-B3-080, supported by the Vice-Presidency of Research, University of Costa Rica. The scientific facilities of the Costa Rican Ministry of Environment, Energy and Telecommunications (MINAET) and its National System of Conservation Areas (SINAC) kindly issued the collecting permits.

1Lankester Botanical Garden, University of Costa Rica. P.O. Box 302-7050 Cartago, Costa Rica
2Author for correspondence: lizbeth.oses@ucr.ac.cr
3Naturalis Biodiversity Center, Leiden, The Netherlands

tubular, 2–5 mm long. Pedicel 4–10 mm long. Ovary curved, 2–4 mm long. Sepals glabrous externally, the dorsal sepal yellow, often flecked with red or purple, microscopically cellular growths, obovate, 17–22 mm long, 4–6 mm wide including the tails in the natural position, connate to the lateral sepals for 3–5 mm to form a cylindrical tube, the free portion broadly triangular, the obtuse apex contracted into an erect, slender (occasionally thickened distally), yellow tail 12–17 mm long; the lateral sepals red-purple, diffusely spotted with darker purple, the spots sometimes raised, with tufts of red hairs, cellular-pubescent to shortly pubescent within, connate 7–12 mm into an ovate, bifid lamina 17–23 mm long, 8–10 mm wide, the acute apices contracted into slender, yellow tails 7–9 mm long; petals white, dark red-purple on the labellar half, elliptical-oblong, 4–6 mm long, 2–3 mm wide, the apex obtuse, apiculate or retuse, the labellar half callous, ending in one retrorse teeth above the unguiculate base; lip white, diffusely dotted with purple, the dots sometimes raised, oblong–ligulate, 4–7 mm long, 1.7–2.0 mm wide, very slightly narrowed near the middle, the apex subacute, rounded to subtruncate, the disc lightly channeled between a low, longitudinal pair of calli, the base subtruncate, hinged below. Column yellow-white to green, the margin purple, semiterete, 4–5.5 mm long, the foot stout with a short, incurved extension.

Distribution: from Costa Rica to Ecuador.

Eponymy: The name honors Alexander Zahlbruckner (Fig. 1) an Austrian botanist who specialized in the study of lichens. He studied at the University of Vienna, and was the grandson of the well-known Austrian botanist Johann Babtist Zahlbruckner (Pisüt, 2002). Alexander supplied Fritz Kraenzlin with many specimens from Reichenbach’s herbarium.

Phenology: Apparently flowering all year round.

Additional specimens examined:
- COSTA RICA. Alajuela: San Carlos, Venecia, without further data collection. It flourished in culture in the Lankester Botanical Garden, C. Blanco s.n. (JBL-spirit); Parque Nacional Rincón de la Vieja, rd. to Colonia Grande by Quebrada Rancho Grande, 700 m, 7 July 1978, C. Todzia 351 (CR); San Ramón, September 1990, L. Acosta s.n. (USJ); San Carlos, Venecia, flourished in culture at Lankester Botanical Garden on 20 March 2002 C. Blanco s.n. (CR); San Carlos, Reserva Forestal Juan Castro Blanco, November 1992, flourished in culture at Lankester Botanical Garden on April 1993, Dora E. Mora s.n. (USJ).
- Guanacaste: Tilarán, Tierras Morenas, desviación a la izquierda después del Río Cabuyo, camino al Proyecto Geotérmico Tenorio y Cerro Jilguero, ca. 4.5 km norte de Tierras Morenas, ladera sureste del Volcán Tenorio, 10°36’11.6”N, 85°00’05.3”W, 900–1000 m, bosque.
FIGURE 2. Masdevallia zahlbruckneri. A, Habit; B, Flower; C, Perianth, flattened; D, Column and lip, side view; E, Lip; F, Petal, ventral view; G, Column, ventral and side views; H, Anther cap and pollinarium. Drawn from Karremans 5873 by L. Oses.
pluvial premontano, epífitas a orillas del camino y en bordes de potreros, 2 February 2006, D. Bogarín, R.L. Dressler, R. Gómez and A. Rojas 2410 (JBL-spirit); Tilarán, Tierras Morenas, desviación a la izquierda después del Río Cabuyo, entrada al Proyecto Geotórico Tenorio y Cerro Jigüeero, ca. 7 km al noreste de Tierras Morenas, ladera sureste del Volcán Tenorio, 10°36’55.7”N, 85°00’43.1”W, 900-1100 m, bosque pluvial premontano, epífitas a orillas del camino y bosque secundario, 2 February 2006, D. Bogarín, R. L. Dressler, R. Gómez, and A. Rojas 2413 (JBL-spirit); San José: Pérez Zeledón, San Andrés de Dota, epiphytic plant growth, 10 September 1990, Victor Gin Lun s.n., (USJ); Pérez Zeledón, San Ramón Norte, trail to the summit of Cerro Pelón, 1400–1640 m, 3 May 2000, F. Pupulin, et al. 2405 (USJ); Pérez Zeledón, Paramo, 1420m, 9°29’01”N, 83°45’18”W, Paramo, bosque muy húmedo premontano, sobre la calle principal entre San Ramón Norte y Santa Eduvigis, epífitas al lado de la calle pocos km antes del pueblo, 6 April 2013. A.P. Karremans, R. Lok, R. Ferreira and V. Ferreira 5873 (JBL-spirit) Fig. 2; Pérez Zeledón, Paramo, Los Ángeles, sobre el camino a San Gerardo de Dota, montañas al norte del río División, en línea con el centro de Los Ángeles, 1700 m, 9°29’55”N, 83°47’46”W, bosque pluvial premontano, a orillas del camino dentro del bosque, 29 May 2014, A.P. Karremans and G. Meza, L. Oses 6246 (JBL-digital collection); same date and locality A.P. Karremans, G. Meza and L. Oses 6247 (JBL-digital collection).

Masevellia utriculata Luer. Phytologia 44(3): 169, 1979. TYPE: PANAMA. Chiriquí [Boquete]: epiphytic in cloud forest on Cerro Pate Macho, alt. 2200 m, 27 February 1979, R. L. Dressler and J. Kuhn s.n., (holotype, SEL; illustration Luer 4073).

Epiphytic, caespitose, herbs, small to medium in size. Roots coarse. Ramicauls slender, erect, 1.0–1.5 cm long, enclosed by 2–3 thin, close, tubular sheaths. Leaf erect, coriaceous, 6–10 cm long including an indistinct petiole 1.0–1.5 cm long, narrowly oblong-obovate, 1.2–1.5 cm wide, subacute to obtuse at the apex, narrowed below into the subpetiolar base. Inflorescence a congested, few–flowered raceme of successive flowers from low on the ramicaul, borne by a stout, suberect to horizontal peduncle, 1.5–2.0 cm long, with a bract near the middle. Floral bract tubular, 4–5 mm long. Pedicel 4–15 mm long. Ovary subovar przecowe with undulate ribs, 2–5 mm long. Sepals fleshy, rigid, the dorsal sepal yellow-green, with a few purple verrucosities within, obovate, 12–20 mm long, 4–6 mm wide, connate to the lateral sepals for 5 mm into a cylindrical tube, the apex subacute, contracted into an erect, thick, subclavate, laterally compressed, yellow-green tail ca. 6–11 mm long; the lateral sepals yellowish, studded with multiple red excrescences within, connate 15 mm to form an obovate, coarsely verrucose, bifid lamina 15–20 mm long, 9–13 mm wide, expanded with, the apices subacute; petals yellow, spotted with purple on the labellar half, oblong, 5.0–5.5 mm long, 2 mm wide, the apex truncate–retuse, with a longitudinal callus along both borders, the upper overhanging the apex, the callus of the labellar margin distinct, ending between the basal and middle thirds; lip dull yellow, diffusely dotted with purple, thick, obovate, minutely verrucose, 5.0–6.5 mm long, 2–3 mm wide, the apex broadly rounded, verrucose, the disc shallowly sulcate between a longitudinal pair of oblique calli obtusely angled above the middle, the base bilobed–cordate, each lobe deeply saccate, hinged beneath. Column yellow, marked with purple, semiterete, 5 mm long, the foot equally long, spotted with purple, with an incurved 3 mm extension.

Distribution: Known from Western Panama and from Coto Brus and Talamanca in Costa Rica at elevations between 2100–2400 m.

Etymology: From the Latin *utriculus*, “with small bladders,” referring to the base of the lip.

Phenology: Apparently flowering all year round.

Figure 3. *Masdevallia utriculata*. A, Habit; B, Flower; C, Perianth, flattened; D, Column and lip, side view; E, Petals and lip, ventral view; F, Column, ventral view; G, Pollinarium and anther cap. Drawn from *D. Bogarin 10652* by L. Oses.
DISCUSSION

Masdevallia zahlbruckneri and *M. utriculata* share features including the relatively small caespitose habit (7–10 cm long tall), a short, horizontal peduncle (horizontal to descending in *M. zahlbruckneri*); a short, successively flowered raceme, the longitudinally convex ovary (slightly steeper in *M. zahlbruckneri*) and a superficial resemblance in the color pattern of the sepals and lip. *Masdevallia crescenticola* F.Lehm. & Kraenzl., *M. descendens* Luer & Andreeta, *M. leontoglossa* Rchb.f., *M. lintricula* Königer, *M. loui* Luer & Dalström, *M. mascarata* Luer and Vasquez, *M. pyxis* Luer, are also morphologically similar to *M. zahlbruckneri* and *M. utriculata*, sharing a pendulous inflorescence (with exception of *M. mascarata* and *M. pyxis*), the yellow dorsal sepal, and the lateral sepal and lip marked with purple spots.

We can, nevertheless, also find several differences between *M. zahlbruckneri* and *M. utriculata*. In all the examined specimens, there is consistent variation in the length of the tails of each sepal, the tail of the dorsal sepal being up to 12 mm longer, and the one on the lateral sepals up to 7–9 mm longer in *M. zahlbruckneri* versus *M. utriculata*, respectively. The dorsal sepal in *M. utriculata* is prominently thickened apically, whilst the tail of *M. zahlbruckneri* is slimmer to only slightly thickened. The most important dissimilarity, found in the petals, led Luer (2006) to place the two species in different sections and even different genera. In *M. zahlbruckneri* the laminar half of the lip is callous, ending in an obtuse angle, or into one or two retrorse teeth above the unguiculate base; this characteristic is absent in *M. utriculata*, whose petals are oblong with a callous lower margin. The color pattern of the petals also differs between the two species; they are white and dark red-purple on the labellar half in *M. zahlbruckneri*, whereas in *M. utriculata* the petals are yellow, spotted with purple on the labellar half. The lip is oblong without marginal folds, the disc shallowly sulcate between a longitudinal pair of oblique calli obtusely angled above the middle and the disc lightly channeled between a low, longitudinal pair of calli, the base subtruncate, hinged below in *M. zahlbruckneri*. The yellow–white to green column of *M. zahlbruckneri* has a continuous purple margin, while the column of *M. utriculata* is marked with purple spots along the margins. The pollinaria also differ, although they are hardly noticeable (Fig. 4–6). The two species also have a different pattern of distribution and altitudinal range (Fig. 7–8). According to the known collecting itineraries of Endrés, it can be suspected that the type of *M. zahlbruckneri* came from the area around San Ramón, in the Tilarán mountain range (Pupulin et al., 2014).

The process at the base of the petals has been one of the most important criteria to recognize species segregated from *Masdevallia* in different genera (Luer, 2006). Luer’s *Acinopetala* differs from *Zahleria* in the petals, which have small process above or along the margin between the middle and basal third in *Acinopetala*, while in *Zahleria* they are provided with a longitudinal callus on the lower half ending in a retrorse process (Luer, 2006). However, this particular feature is not always evident, and can sometimes vary within a single taxon. *Masdevallia schizopetala*, which has also been placed in *Masdevallia* sect. *Zahlbrucknerae*, was later transferred to the genus *Acinopetala* instead, on the basis of the distinct petals’ callus. *Masdevallia humilis* Luer was originally described as a toothless relative of *M. zahlbruckneri*, but was later synonymized. This indicates that this feature does not represent a key character for the recognition of a natural group as species (Fig. 9).

High morphological variation was found in the flowers of *M. zahlbruckneri*, especially in the shape of petals and the length of the dorsal and lateral sepal tails, as was suggested by Luer (2000) where Luer even found that some populations of the species have a clavate dorsal sepal in Central America. *Masdevallia utriculata* is characterized by a broadly cylindrical sepaline tube with the widely expanded, red verrucose lateral sepals tailless. The tail of the dorsal sepal is clavate. The studied specimens present a slight variation in the arrangement of the tails and the purple dots density of the sepals (Fig. 6).

Due to the overall similarity between the two species, both in terms of vegetative habit and floral shape, we were initially surprised to find out that they had not been associated with each other based on their general morphology, but were assigned instead to different genera, *Regalia* for *M. utriculata* and *Zahleria* for *M. zahlbruckneri* (Luer 2006). Our unpublished DNA analyses of the group confirm, however, that they are not closely related at all. In the sense of *Masdevallia* systematics, it is clear that there is still much to answer and understanding how each species relates to others is one of the most essential questions to resolve.

Flower morphology, most commonly used for the classification of species, has been amply proven to be convergent in many groups of Pleurothallidinae, frequently responding to pollinator adaptations rather than genetic history (Pridgeon et al., 2001; Karremans et al., 2013, 2015). Plant habit, although also under selective pressure due to ecological niche preferences, is however under less influence of the pollinators, and can be more constant amongst close relatives in the Pleurothallidinae. Phylogenetic inferences based on DNA data give us an unbiased view of the relationships amongst species and can be a guide to understand which morphological characteristics have actually converged and which are phylogenetically informative. It is clear now that some of the features used to group species of *Masdevallia* do not convey phylogenetic information and should therefore be revised. It is difficult to place species of *Masdevallia* in subgenera and sections with absolute confidence, and it is not surprising that the genera proposed as segregates of *Masdevallia* are not monophyletic (Abele, 2005, 2007; Pridgeon et al., 2005). We believe a phylogenetic analysis of the entire genus in its broad sense coupled with a morphological characterization of the resulting groups of species is very necessary.
FIGURE 4. Lankester composite dissection plate (LCDP) of Masdevallia zahlbruckneri. A, Habit; B, Flower; C, Dissected perianth; D, Petal adaxial view; E, Lip, adaxial view; F, Column and lip, lateral view; G, Column, adaxial and three quarters view; H, Pollinarium and anther cap. All images from A. P. Karremans 5873, photographs by A. Karremans and L. Oses.
Figure 5. LCDP of *Masdevallia utriculata*. **A**, Habit; **B**, Flower; **C**, Dissected perianth; **D**, Petals and lip, adaxial view; **E**, Column and lip, lateral view; **F**, Column, adaxial view; **G**, Pollinarium and anther cap. All images from *D. Bogarín 10652*, photographs by *D. Bogarín*.
FIGURE 6. Intraespecific variation of floral morphology in different specimens of: A. *Masdevallia zahlbruckneri*; a, AK5873; b, AK6247; c, AK6246. B. *M. utriculata*; d, AK6106; e, DB10647; f, AK6169; g, AK6100; and h, DB10652. Photographs by L. Oses (A) and A. Karremans (B) (AK = A. Karremans; DB = D. Bogarín).
FIGURE 7. Distribution map of *Masdevallia zahlbruckneri* and *M. utriculata* in Costa Rica.

LITERATURE CITED

Figure 8. Altitudinal range distribution of *Masdevallia zahlbruckneri* and *M. utriculata* in Costa Rica.

Figure 9. Adaxial view of the petal of different specimens. **A**, *Masdevallia zahlbruckneri*: a, AK6246; b, AK6246; c, AK5873; d, DB2413 (JBL-Spirit). **B**, *M. schizopetala*: e, DB10475. Photographs by L. Oses (AK = A. Karremans; DB = D. Bogarín).

APPENDIX

INDEX TO NUMBERED COLLECTIONS

Blanco s.n [JBL D2280] (1); s.n. [CR](4).

Todzia 351 (2).

Acosta s.n. (3).

Mora s.n. (5).

Bogarín & al. 2410 (6); 2413 (7); 10691(14); 8088 (18); 10652 (20); 10647 (21).

Lun s.n. (8).

Pupulin & al. 2405 (9).

Karremans & Lok 5873 (10).

Karremans & Geml 5387 (16); 5417 (17).

Karremans & al. 6246 (11); 6247 (12); 6365 (13); 6169 (15); 6106 (22).

Fernández & al. 430 (19); 431 (19).
TERNSTROEMIA WASHIKIATII (PENTAPHYLACACEAE): A NEW TREE SPECIES FROM EASTERN ECUADOR

XAVIER CORNEJO¹,² AND **CARMEN ULLOA ULLOA**³

Abstract. *Ternstroemia washikiatii* a new species of Pentaphylacaceae from the Amazonian forests of Eastern Ecuador, is here described and illustrated. It is distinguished from the remaining species in the genus by the large leaves (21–33 × 8.5–11 cm), and the very distinctive large fruits (4.5–5.5 × 6.5–7.7 cm) with six to nine seeds. *Ternstroemia washikiatii* is assessed as Near Threatened.

Resumen. Se describe e ilustra *Ternstroemia washikiatii*, una nueva especie de Pentaphylacaceae de los bosques amazónicos del oriente de Ecuador. Esta nueva especie se distingue de las restantes en este género por las hojas grandes (21–33 × 8.5–11 cm) y los frutos grandes (4.5–5.5 × 6.5–7.7 cm) con seis a nueve semillas, que son muy distintivos. A esta nueva especie se asigna el estatus de Casi Amenazada.

Keywords: Amazonia, Pentaphylacaceae, *Ternstroemia washikiatii*, Ecuador, endemic

Ternstroemia Mutis ex L. f. (Pentaphylaceae) is widely distributed in tropical and subtropical America, Africa, Southeast and East Asia (Weitzman et al., 2004; Berry and Weitzman, 2005; Mabberley, 2008; Santamaria Aguilar et al., 2015). The genus comprises ca. 100 species, ca. 60 of those occurring in the Neotropics (Every, 2009), including the type, *Ternstroemia meridionalis* Mutis ex L. f., collected in northwestern South America. Four species were reported for Ecuador (Jørgensen and León-Yánez, 1999, as Theaceae) but none in the Amazon region. During field work in Eastern Ecuador the senior author collected a tree with large fruits that does not match any of the current species described in the genus. After consulting collections in AAU, GB, GUAY, MO, NY, and S (herbarium acronyms according to Thiers, 2016), as well as images of type collections on JStor (plants.jstor.org) we concluded that these collections belong to an undescribed species that we formally present herein.

Ternstroemia washikiatii Cornejo & C. Ulloa, sp. nov. TYPE: ECUADOR. Pastaza: 18 km E from Puyo, finca Ursula, secondary wet forest, 1°30′28″S 77°50′16″W, 650 m, 3 July 2016 (fr), Xavier Cornejo & Carmen Ulloa Ulloa 8808 (Holotype: GUAY; Isotypes: MO, NY, QCA). Fig. 1.

Species nova affinis *Ternstroemia macrocarpa* Triana & Planch. et T. krukkofiana Kobuski, a qua folis et fructus grandioribus, semina 6–9 (vs. 16–18 *T. macrocarpa*, 1–2 *T. krukkofiana*) differt.

Tree to 14 m tall and 30 cm or more dbh; glabrous throughout. **Branches** stout, lenticellate, glabrous. Stipules absent. **Leaves** spirally arranged, clustered at end of terminal branches; **blades** coriaceous, shortly oblongate or narrowly-ovate to narrowly-elliptic, 21–33 × 8.5–11 cm, cuneate at base, barely obtuse and acuminate at apex, the acumen 1.5–2.7 cm long, margins minutely denticulate to serrulate in seedlings, turning entire with age, mature leaves with revolute margins mainly at base, dark green (in vivo) and dark brown (dry), midvein sulcate above, pale green (in vivo) and light brown with abundant glandular darker dots and a prominent midvein beneath (dry); main lateral veins ca. 14 to 17 on each side, weakly brochydromalous, intersecondarys present, glabrous on both sides; **petioles** 1.5–3 × 0.3–0.4 cm, flattened-depressed and longitudinally channeled adaxially, glabrous. **Inflorescences** and flowers not seen. **Fruits** terminal amphiarca, globose-depressed, 4.5–5.5 × 5.5–7.7 cm, mucronulate at apex, opaque orange, abundantly lenticellate and glabrous at maturity; crowned by a persistent calyx, the calyx lobes 5–6, imbricate in 2 whors, the external whorl of lobes cartilaginous, ovate to deltoid, 1.0–1.4 × 0.8–1.2 cm, the margins glandular denticulate, the apex apiculate, glabrous without. Pedicels in fruit, 1.2–1.7 × 0.7–0.9 cm, straight to weakly curved, 1-ribbed laterally, abundantly lenticellate. **Mesocarp** 0.8–2 cm thick. Locules 2; placation basal, the seeds attached from the apex of a central column. Seeds 6 to 9, obovate to somewhat oblong, 2.3 × 2.3–2 cm (in vivo), 2.5 × 1.3–1.7 cm (dry), testa orange, covered by a soft, purple-red sarcotesta.

Eponymy: The epithet of this taxonomic novelty honors Ramiro Washikiat, the indigenous Achuar co-collector, for his invaluable help gathering samples of this tree when first discovered.

Paratype: ECUADOR. Pastaza: 18 km E from Puyo, finca Ursula, secondary wet forest, 1°30′28″S, 77°50′16″W, 650 m, 10 January 2016 (fr), X. Cornejo, R. Washikiat & A. Kay 8770 (GUAY).

Habitat and distribution: *Ternstroemia washikiatii* is known only from a single tree in the type locality. The habitat is a secondary Amazonian forest located at finca Ursula, a private property located 18 km E from Puyo, Pastaza province, in Eastern Ecuador.

Thanks are due to Ursula Gelchsheimer for the kind invitation to explore the finca Ursula, the type locality. We also thank the curators of AAU, GB, GUAY, MO, NY, and S for permitting us to study their holdings, and Peter Stevens for discussion on the identity of this plant, and the comments of two anonymous reviewers.

³Herbario GUAY, Facultad de Ciencias Naturales, Universidad de Guayaquil, Av. Raúl Gómez Lince s/n. y Av. Juan Tanca Marenco (campus Mapasingue), P.O. Box 09-01-10634, Guayaquil, Ecuador

²Author for correspondence: xcornejoguay@gmail.com

¹Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, Missouri 63110, U.S.A.

© President and Fellows of Harvard College, 2016

ISSN: 1938-2944, DOI: 10.3100/hpib.v21iss2.2016.n14, Published online: 31 December 2016
Figure 1. *Ternstroemia washikiatii* Cornejo & C.Ulloa. A, terminal leafy branch bearing petiolo and cuneate leaf bases, abaxial view; B, terminal leafy branch bearing channelled petiolo and fresh petiolar scars, adaxial view; C, fruit with pedicel and persistent calyx, basal view; D, mature fruit attached to a terminal branch, lateral view; E, Longitudinal section of a mature fruit; F, detached seeds. Photographs by X. Cornejo based on the Holotype.
Seed germination: Seeds outside of the fruit have been observed to germinate after six to seven months without removal of the sarcotesta. After falling, the fruits remain hard and last for several months on the forest floor until they decompose. A cut of fully closed fruit revealed that the seeds have the ability to germinate before the exocarp and mesocarp decay, and without help of dispersers. Those young seedlings carefully removed from closed fruits could potentially be cultivated. These observations suggest that the fruits could be harvested from the forest and stored in a moist, shady environment for several months in order to manage the species for reforestation, forest restoration, or ex situ conservation programs.

Conservation status: At present, the native vegetation of the area where Ternstroemia washikiatii occurs is mostly conserved. However, deforestation and forest fragmentation is expected in the near future due to road construction and mainly due to the advance of the agricultural frontier and land use or forest conversion to cattle farms. Therefore, the preliminary status of Near Threatened (NT) (IUCN, 2012), is assigned to this species.

Because of the large size of the fruits, compared to other Neotropical species, Ternstroemia washikiatii may resemble the Colombian T. macrocarpa Triana & Planch. or the Brazilian T. krukoffiana Kobuski; however, T. washikiatii differs from both species by the distinctively larger fruits and longer leaf blades, different number of seeds, and different pattern of distribution and elevation. It is most likely that these are the largest fruits in the genus in the Neotropics, being much wider than those of T. krukoffiana. Although we did not find flowers, having monitored the phenology of the tree for a year, other species in the genus have been described and compared with fruiting characters (Kobuski, 1942). Table 1 presents the differences among these species.

Table 1. Comparison of Ternstroemia washikiatii Cornejo & C.Ulloa with similar large fruited species.

<table>
<thead>
<tr>
<th></th>
<th>T. WASHIKIATII</th>
<th>T. MACROCARPA</th>
<th>T. KRUKOFFIANA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calyx lobes (fruit)</td>
<td>10–14 × 8–12 mm</td>
<td>20 × 11–14 mm</td>
<td>8–10 × 7–8 mm</td>
</tr>
<tr>
<td>Leaves</td>
<td>21–33 cm × 8.5–11 cm</td>
<td>8–16 × 5–8 cm</td>
<td>12–20 × 4–5 cm</td>
</tr>
<tr>
<td>Fruit length × diam.</td>
<td>4.5–5.5 × 5.5–7.7 cm</td>
<td>2–2.5 × 2 cm</td>
<td>4–5 × 3.5–4 cm</td>
</tr>
<tr>
<td>Number of seeds</td>
<td>6–9</td>
<td>16–18</td>
<td>1–2</td>
</tr>
<tr>
<td>Elevation</td>
<td>650 m</td>
<td>2500–3000 m</td>
<td>160 m</td>
</tr>
<tr>
<td>Distribution</td>
<td>Pastaza, Ecuador</td>
<td>Andes, Colombia</td>
<td>Amazonas, Brazil</td>
</tr>
</tbody>
</table>

LITERATURE CITED

INDEX TO NEW NAMES AND COMBINATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Author/Combination</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acianthera subgen. Antilla (Luer) Karremans, comb. nov.</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Acianthera subgen. Brenesia (Schltr.) Karremans, comb. nov.</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Acianthera subgen. Kraenzlinella (Kuntze) Karremans, comb. nov.</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Acianthera albiflora (Barb.Rodr.) Karremans, comb. nov.</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Acianthera barthelemyi (Luer) Karremans, comb. nov.</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Acianthera beyrodtiana (Kraenzl.) Karremans, comb. nov.</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Acianthera brunnescens (Schltr.) Karremans, comb. nov.</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Acianthera cachensis (Ames) Karremans, comb. nov.</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Acianthera caymanensis (C.D.Adams) Karremans, comb. nov.</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Acianthera costaricensis (Schltr.) Pupulin & Karremans, comb. nov.</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Acianthera denticulata (Cogn.) Karremans, comb. nov.</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Acianthera minuta (Rolfe) Karremans, comb. nov.</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Acianthera nellyae (P.Ortiz) Karremans, comb. nov.</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Acianthera paradoxa (Luer & Dalström) Karremans, comb. nov.</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Acianthera purpurascens (Luer & Hirtz) Karremans, comb. nov.</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Acianthera scabripes (Lindl.) Karremans, comb. nov.</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Acianthera thyrsana (Luer & J.Portilla) Karremans, comb. nov.</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Anathallis anfracta (Luer) Karremans, comb. nov.</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Aspidogyne jussariensis Ormerod, sp. nov.</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Calyptranthes mcvaughii M.L.Kawas. & D.Santam., sp. nov.</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>Clusia scariosepala (Maguire) Luján stat. nov.</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Lepanthopsis kayi Thoerle & Cornejo, sp. nov.</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>Lepidium seydelii Al-Shehbaz, sp. nov.</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Liparis vasquezii Ormerod, sp. nov.</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>Liparis yanachagae Ormerod, sp. nov.</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Malaxis section Chrysanthera (Link, Klotzsch & Otto) Ormerod, comb. nov.</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Microchilus tunquianus Ormerod, sp. nov.</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>Salvia ali-askaryi S.A.Ahmad, sp. nov.</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>Sobralia turrialbina Dressler, M.Acuña & Pupulin, sp. nov.</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>Stelis aggregata Luer & R.Escobar, sp. nov.</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Stelis ambrosia Luer & R.Escobar, sp. nov.</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Stelis arrecta Luer & R.Escobar, sp. nov.</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Stelis bracteolenta Luer & R.Escobar, sp. nov.</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Stelis chalatantha Luer & Hirtz, sp. nov.</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Stelis clematis Luer & R.Escobar, sp. nov.</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>Stelis climatella Luer & R.Escobar, sp. nov.</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>Stelis colossus Luer & R.Escobar, sp. nov.</td>
<td>198</td>
<td></td>
</tr>
</tbody>
</table>

© President and Fellows of Harvard College, 2016
ISSN: 1938-2944, DOI: 10.3100/hpib.v21iss2.2016.n15, Published online: 31 December 2016
Stelis cyathochila Luer & R. Escobar, sp. nov. ... 198
Stelis dasysepala Luer & R. Escobar, sp. nov. ... 198
Stelis divericans Luer & R. Escobar, sp. nov. ... 199
Stelis glochochila Luer & R. Escobar, sp. nov. ... 199
Stelis hercules Luer & R. Escobar, sp. nov. ... 199
Stelis hiatilabia Luer & R. Escobar, sp. nov. ... 201
Stelis hypsitera Luer & R. Escobar, sp. nov. ... 201
Stelis lacertina Luer & R. Escobar, sp. nov. ... 203
Stelis lagarantha Luer & R. Escobar, sp. nov. ... 203
Stelis laplanadensis Luer & R. Escobar, sp. nov. ... 203
Stelis leprina Luer & R. Escobar, sp. nov. ... 205
Stelis leptorhiza Luer & R. Escobar, sp. nov. ... 205
Stelis marginata Luer & R. Escobar, sp. nov. ... 208
Stelis menippe Luer & R. Escobar, sp. nov. ... 206
Stelis miranda Luer & R. Escobar, sp. nov. ... 206
Stelis molecule Luer & R. Escobar, sp. nov. ... 208
Stelis mordica Luer & R. Escobar, sp. nov. ... 208
Stelis nexosa Luer & R. Escobar, sp. nov. ... 208
Stelis oblector Luer & R. Escobar, sp. nov. ... 210
Stelis ocreosa Luer & R. Escobar, sp. nov. ... 210
Stelis ophiodontodes Luer & R. Escobar, sp. nov. ... 210
Stelis oreibator Luer & R. Escobar, sp. nov. ... 211
Stelis otara Luer & R. Escobar, sp. nov. ... 211
Stelis ozota Luer & R. Escobar, sp. nov. ... 213
Stelis pachoi Luer & R. Escobar, sp. nov. ... 213
Stelis pachythrix Luer & R. Escobar, sp. nov. ... 213
Stelis paradoxa Luer & R. Escobar, sp. nov. ... 215
Stelis pollerecta Luer & R. Escobar, sp. nov. ... 215
Stelis prionota Luer & R. Escobar, sp. nov. ... 216
Stelis radicans Luer & R. Escobar, sp. nov. ... 216
Stelis rectangularis Luer & R. Escobar, sp. nov. ... 216
Stelis silvestris Luer & R. Escobar, sp. nov. ... 218
Stelis stipitata Luer & R. Escobar, sp. nov. ... 218
Stelis straminea Luer & R. Escobar, sp. nov. ... 218
Stelis sublesta Luer & R. Escobar, sp. nov. ... 220
Stelis tauroculosa Luer & R. Escobar, sp. nov. ... 220
Stelis titania Luer & R. Escobar, sp. nov. ... 220
Stelis torulosa Luer & R. Escobar, sp. nov. ... 221
Stelis trifoliacea Luer & R. Escobar, sp. nov. ... 221
Stelis trocho phora Luer & R. Escobar, sp. nov. ... 223
Stelis tsubotae Luer & R. Escobar, sp. nov. ... 223
Stelis uberis Luer & R. Escobar, sp. nov. ... 223
Ternstroemia washikiatii Cornejo & C. Ulloa, sp. nov. ... 337

Harvard Papers in Botany was published as individually paginated issues up to number 10 (April 1997). Starting with the next issue, it has been published in volumes, each volume consisting of two numbers with continuous pagination. Number 1–10, published between May 1989 and April 1997, constitute Volume 1. Volume 1, number 10, includes a cumulative, comprehensive index for the first volume. Print Copies for most volumes 1 through 18 are available. Please contact papers@oeb.harvard.edu for more information.

This issue of Harvard Papers in Botany was composed by Barbara Kroner Morra, using Adobe InDesign CS6 for the Macintosh. The body of the text is set in 10-point Times Roman on 11 points of leading.
Harvard Papers in Botany

Volume 21, Number 2

A Publication of the Harvard University Herbaria Including

The Journal of the Arnold Arboretum

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| Ihsan A. Al-Shehbaz
Lepidium seydelii (Brassicaceae), a new species from Namibia | 133 |
| Manuel Luján
Clusia Scariosepala (Clusaceae), a distinct species of *Clusia sect. Anandrogyne*
endemic to the Venezuelan Andes | 137 |
| William Cetzal-Ix, Germán Carnevali Fernández-Concha,
and Gustavo Romero-González
Synopsis of the *Trichocentrum*-clade (Orchidaceae, Oncidiinae) | 141 |
| Adam P. Karremans, Diego Bogarín, Melissa Díaz-Morales,
Melania Fernández, Lisbeth Oses, and Franco Pupulin
Phylogenetic reassessment of *Acianthera* (Orchidaceae: Pleurothallidinae) | 171 |
| Maria Lúcia Kawasaki and Daniel Santamaría-Aguilar
A new species of *Calyptranthes* (Myrtaceae) from Peru | 189 |
| Carlyle A. Luer
Icones Stelidarum (Orchidaceae) Colombiae II | 193 |
| Saman A. Ahmad
Salvia Ali-Askaryi (Lamiaceae), a new species from Kurdistan, Iraq | 227 |
| Paul Ormerod
Neotropical orchid miscellanea | 231 |
| Lisa Thoerle and Xavier Cornejo
Lepanthopsis kayi (Pleurothallidinae, Orchidaceae), a new species from eastern Ecuador | 247 |
| Robert L. Dressler, Marco Acuña, and Franco Pupulin
Sobralia turfialbina (Orchidaceae: Sobralieae): long cultivated and now described | 251 |
| Franco Pupulin, Diego Bogarín, Melania Fernández, Melissa Díaz-Morales,
Jaime Aguilar, and Carlos Ossenbach
Orchidaceae Tonduzianae: typification of Costa Rican Orchidaceae
described from collections of Adolphe Tonduz | 263 |
| Franco Pupulin
A note on three “new” species of *Xylobium* (Orchidaceae, Maxillariinae)
from Ruiz and Pavón’s Peruvian collections | 321 |
| Lizbeth Oses Salas and Adam P. Karremans
A note on *Masdevallia Zahlbruckneri* and *M. Utriculata* (Orchidaceae) | 325 |
| Xavier Cornejo and Carmen Ulloa Ulloa
Ternstroemia washkiatii (Pentaphylacaceae): a new tree species from Eastern Ecuador | 337 |
| Index to New Names and Combinations | 341 |